Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Establishing a methodology to enhance the piezoelectric response of PVDF and PVDF-based composites for energy harvesting in smart textile(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-12-05) Galguera Gómez, José Ramón; Lozano Sánchez, Luis Marcelo; emimmayorquin; Bonilla Rios, Jaime; Flores Hernández, Domingo Ricardo; Sotelo Flores, Juan Guillermo; School of Engineering and Sciences; Campus Monterrey; Sustaita Narváez, Alan OsirisThis thesis presents a comprehensive study aimed at establishing a methodology to enhance the piezoelectric response of poly(vinylidene fluoride) (PVDF) and its composites for potential applications in energy harvesting and potential sensing applications. The research focuses on the incorporation of barium titanate (BaTiO3) and CaZrO3-based dielectric (SCZT) particles into PVDF to compare composite materials with improved piezoelectric properties from pure PVDF. Key parameters including uniaxial stretching and electrode poling, are intentionally adjusted to optimize the piezoelectric performance of the films. Characterization techniques, such as Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) and change in current measurements. The findings aim to contribute valuable insights into the development of efficient energy harvesting solutions from body movements, particularly for applications in the military and everyday textile technologies.
- Implementación de un modelo matemático para el control de espesores de películas de BaTiO3/PVDF por spin- coating(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-11-28) Ochoa Bonilla, Eduardo Ernesto; Sustaita Narváez, Alan Osiris; emipsanchez; Iturbe E K, Jackeline; Escuela de Ingeniería y Ciencias; Campus Monterrey; Ulloa Castillo, Nicolas AntonioLas películas delgadas juegan un papel esencial en el desarrollo e investigación de nanomateriales con propiedades nuevas dando aplicaciones que pueden ser desde un simple recubrimiento para evitar la corrosión, hasta aplicaciones fotovoltaicas y de microelectrónica. Se estudiaron películas sintetizadas a partir de Titanato de Bario (BaTiO3) y Fluoruro de Polivinilideno (PVDF) disuelto en N, N-dimetilformamida (DMF) HCON(CH3)2, por la metodología sol gel para la preparación de las nanopartículas. Las películas fueron depositadas por el método de deposición por centrifugación (spin-coating). Utilizado un modelo matemático propuesto por Emslie et al., se llevó a cabo una modelación para la predicción de grosores y controlar el espesor de las películas a partir de las concentraciones seleccionadas buscando beneficiar la obtención de películas delgadas uniformes y que promuevan la conversión de fase beta cristalina del PVDF. Para la deposición se llevó a cabo un estudio reológico de la solución a envejecer de PVDF / BaTiO3 para conocer algunos parámetros de viscoelasticidad usados en el modelo matemático. Por último, se desarrolló un diseño experimental variando la concentración de nanopartículas añadidas y evaluando los grosores de las películas con las del modelo matemático. Las concentraciones seleccionadas tras las pruebas exploratorias con el PVDF y BaTiO3 variaron de 0.02-0.05 g/10mL y 0.10-0.15 g/100mL respectivamente en relación con el peso del DMF. La velocidad de deposición utilizada fue de 2000 rpm. Las películas se caracterizaron por perfilometría, espectroscopia infrarroja y difracción de rayos X, a fin de conocer la composición y estructura, para el estudio de la conversión de fase β obteniendo hasta en un 80% para las películas con 10% de concentración de BaTiO3 depositadas sobre substratos de silicio y vidrio, evaluando valores similares obtenidos en el modelo matemático para las pruebas usando perfilometría para corroborar el grosor (en µm) de las películas.
- Development of a piezoelectric smart device with fiber meshes elaborated by Forcespinning™(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-06-14) Aguirre Corona, Renato Wenceslao; ELIAS ZUÑIGA, ALEX; 2019150; Elías Zúñiga, Alex; puelquio, emipsanchez; Olvera Trejo, Daniel; Martínez Romero, Oscar; Escuela de Ingeniería y Ciencias; Campus Monterrey; Del Ángel Sánchez, KarinaA novel approach was used in this thesis project. BaTiO3 nanoparticles named as BTO nanoparticles were synthesized in the laboratory and commercial graphene named as G are used as fillers in Polyvinylidene Fluoride named as PVDF for the formation of polymeric meshes for the development of piezoelectric devices. Piezoelectric fiber meshes from different materials as: PVDF, BTO/PVDF, G/PVDF, BTO/G/PVDF are done varying the concentration of the fillers to evaluate the materials. The fiber meshes were fabricated in the Forcespinning™ technique and were characterized using different techniques. Scanning Electron Microscopy was used to obtain the morphology and chemical composition by Energy Dispersive Spectroscopy(EDS), Fourier Transformed Infrared Spectroscopy (FTIR) was done for the identification of the phase composition of the material, Thermogravimetric Analysis allows the obtention of the maximum temperature of degradation to identify the materials with more thermal stability and X-ray Diffraction confirmed us the presence of the planes of the β phase in the fiber meshes and in the BTO the planes that are in concordance to the crystallographic card 96-150-7758. For the characterization of the piezoelectric devices an Impact tester was used with a multimeter to record the voltage generated by all the samples. Where the mean maximum voltage generated for the A2 device is 35.77 Voc, the best device with only BTO as filler, while A3, A4, A6 and A7 samples are samples where G is used with a bad performance. The devices developed can be used for different applications as sensors or nanogenerators, showing a promising performance. Piezoelectric devices are of interest by the generation of voltage from sources that were not used before, therefore producing energy from sustainable alternatives, offering an option for remote self-powered sensors.
- Development of a piezoelectric smart device with fiber meshes elaborated by Forcespinning™(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-06-14) Aguirre Corona, Renato Wenceslao; ELIAS ZUÑIGA, ALEX; 19150; Elías Zúñiga, Alex; tolmquevedo/mscuervo; Rodríguez Salinas, Juan José; Martínez Romero, Oscar; Olvera Trejo, Daniel; Escuela de Ingeniería y Ciencias; Campus Monterrey; Del Ángel Sánchez, KarinaA novel approach was used in this thesis project. BaTiO3 nanoparticles named as BTO nanoparticles were synthesized in the laboratory and commercial graphene named as G are used as fillers in Polyvinylidene Fluoride named as PVDF for the formation of polymeric meshes for the development of piezoelectric devices. Piezoelectric fiber meshes from different materials as: PVDF, BTO/PVDF, G/PVDF, BTO/G/PVDF are done varying the concentration of the fillers to evaluate the materials. The fiber meshes were fabricated in the Forcespinning™ technique and were characterized using different techniques. Scanning Electron Microscopy was used to obtain the morphology and chemical composition by Energy Dispersive Spectroscopy(EDS), Fourier Transformed Infrared Spectroscopy (FTIR) was done for the identification of the phase composition of the material, Thermogravimetric Analysis allows the obtention of the maximum temperature of degradation to identify the materials with more thermal stability and X-ray Diffraction confirmed us the presence of the planes of the β phase in the fiber meshes and in the BTO the planes that are in concordance to the crystallographic card 96-150-7758. For the characterization of the piezoelectric devices an Impact tester was used with a multimeter to record the voltage generated by all the samples. Where the mean maximum voltage generated for the A2 device is 35.77 Voc, the best device with only BTO as filler, while A3, A4, A6 and A7 samples are samples where G is used with a bad performance. The devices developed can be used for different applications as sensors or nanogenerators, showing a promising performance. Piezoelectric devices are of interest by the generation of voltage from sources that were not used before, therefore producing energy from sustainable alternatives, offering an option for remote self-powered sensors.

