Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 3 of 3
  • Tesis de maestría
    Improving the path planning and the printing time for an optimized infill of 3D objects by reducing sharp angles and having a continuous path
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-06-14) Betancourt Adame, Cesar David; NOGUEZ MONROY, JUANA JULIETA; 202512; Noguez Monroy, Juana Julieta; emipsanchez; Ruiz Loza, Sergio; Benes, Bedrich; Escuela de Ingeniería y Ciencias; Campus Ciudad de México
    Purpose – Three-dimensional printing is a technology that can provide one of the most efficient methods for product design, prototyping, and production being positively cost-effective due to the efficiency of the design, the customization of the objects, and the variety of materials. However, contemporary computer-aided design (CAD) and computer-aided manufacturing (CAM) systems use different infill patterns that have the same similarity, they usually contain sharp angles and non-continuous trajectories. A new algorithm is used to create an infill that minimizes the sharp angles in the infills and having a continuous path in order to generate the necessary tool-path information. In this thesis, we propose a new algorithm to create a new type of infill that reduces the amount of time and material used in each layer of an object printed with the Fused Deposition Modeling (FDM) technology. Design/methodology/approach – In the proposed algorithm, a grid is generated in a layer with the specific shape that corresponds to a 3D object, it consists of a percentage according to the one is chosen by the user, being 20% the most used in this technology. The infill is created with a continuous path and minimizing the sharp angles in the whole layer, the optimization is accomplished by using simulated annealing. Findings – By creating and running different experiments in various models of FDM 3D printers, we proved the base of our algorithm, that by having sharp angles in the infill, the total printing time is increased due to the positive and negative acceleration of the printing head, altogether with the non-continuous path that increases the time when stopping extruding material and staring again. Applying the proposed algorithm, this information can be used to create a new path for an infill giving as result the reduction of time and material in each layer of a 3D printed object. Research limitations/implications – The proposed methodology can be applied to create a new infill for objects that will be printed with the FDM technology. However, the algorithm works for optimizing one layer at a time. In the future, we would like to investigate the results between fill patterns of consecutive layers, where consecutive layers can’t be identical to provide good resiliency to the object. Originality/value – The proposed algorithm is a novel development for creating a new type of infill that reduces the amount of time and material employed in the fabrication of 3D objects using the Fused Deposition Modeling (FDM) technology.
  • Tesis de maestría
    Optimización de parámetros de impresión utilizando FDM (modelado por deposición fundida) aplicado al material ASA y ABS
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-12-04) Ramírez Encalada, David Armando; CAMPOSECO NEGRETE, CARMITA; 421562; Camposeco Negrete, Carmita; hermlugo/puemcuervo; Rojo Valerio, Alejandro; Vieyra Ruíz, Horacio; Escuela de Ingeniería y Ciencias; Campus Toluca
    En la actualidad la Manufactura Aditiva (AM) es un proceso el cual sirve para unir dos materiales que pueden ser polímeros, metálicos, entre otros, capa por capa hasta formar una pieza determinada; dada las facilidades de crear diferentes formas y que adicional a ello su proceso de construcción es muy rápido, se pueden realizar distintos prototipos para diferentes aplicaciones lo cual la diferencia de los métodos tradicionalmente conocidos. Dentro de la industria automotriz se utilizan diversas partes para el ensamble de los vehículos, entre los cuales se tiene que algunas de ellas son hechas de plásticos, donde un 20% corresponden a materiales como el ABS y ASA [1]; todas las autopartes por el momento son creados en su mayoría mediante el proceso de inyección de plástico. Tomando en cuenta el constante crecimiento de la industria y que siempre se debe estar a la vanguardia buscando nuevas innovaciones, es imperativo encontrar otra alternativa para la fabricación de los elementos de los automóviles, y específicamente de los plásticos; es ahí donde ingresa la Manufactura Aditiva como un camino viable, del cual se usará la rama que corresponde al proceso de modelado por deposición fundida (FDM) implementado para la extrusión de objetos poliméricos. Al querer aprovechar las cualidades del proceso FDM se va a realizar un estudio para encontrar los parámetros idóneos a modificar en el programa de la impresora 3D, donde se garantice menor tiempo de impresión, mayor precisión dimensional y mejoras en las propiedades mecánicas en el objeto final que se desea construir. Todo esto servirá como guía para futuras aplicaciones ya que se conocerá la combinación ideal de los parámetros de extrusión donde se maximicen los tres factores buscados, lo cual se podría aplicar en la industria para una producción en serie de autopartes.
  • Tesis de maestría
    Pre- and post-processing of PET-G 3D prints of honeycomb cellular structure for high energy absorption and surface engineering
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-06) Basurto Vázquez, Olimpia; MEDINA MEDINA, DORA ILIANA; 40536; VALENCIA LAZCANO, ANAI ALICIA; 230234; SANCHEZ RODRIGUEZ, ELVIA PATRICIA; 100483; Medina Medina, Dora Iliana; RR; Valencia Lazcano, Anai Alicia; Stasiak, Joanna; School of Engineering and Sciences; Campus Estado de México; Sánchez Rodríguez, Elvia Patricia
    Upon an impact, the resulting energy is manifested through unwanted damage to objects or persons. Therefore, it is essential to improve protective materials such that the system reduces injuries to the involved moving parts by the selection of material properties, design, and manufacturing processes. New materials with enhanced energy absorption capabilities are made of cellular structures. The hexagonal honeycomb structure is one of the most well-known for its space-filling capacity, structural stability, and high energy absorption potential. Additive Manufacturing (AM) technologies have been effectively useful in a vast range of applications. The evolution of these technologies has been studied continuously, focusing on improving mechanical and structural characteristics of the 3D printed models, such as fracture toughness to resist impacts and crack propagation to create complex quality parts that not only satisfy design requirements but also functionality, mechanical properties, and cost. An accessible manufacturing technology, for creating complex structures, is Fused Deposition Modeling (FDM). Nevertheless, this method has adverse surface features related to its layer by layer deposition. In this study, the 3D honeycomb structures of polyethylene terephthalate glycol (PET-G) were fabricated by the FDM method. The process parameters considered are infill density and layer printing orientation. The effectiveness of the design is investigated by performing in-plane compression tests. The set of parameters that produces superior results for better energy absorption capabilities is determined by analyzing the welding between filament layers in the printed object by the FDM technology. The structures were subjected to a vaporized solvent bonding post-processing technique, and the investigation highlights the rationale of interlayer diffusion response and adhesion strength by applying a sol-gel hydrophobic coating. This study utilized roughness, hardness, and contact angle analyses to provide a better understanding of the solvent-polymer interactions to gain insight into the advantages and limitations of this technique.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia