Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de maestría
    Detection of suspicious attitudes on video using neuroevolved shallow and deep neural networks models
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-11) Flores Munguía, Carlos; Terashima Marín, Hugo; puemcuervo/tolmquevedo; Oliva, Diego; Ortiz Bayliss, Jose Carlos; School of Engineering and Sciences; Campus Monterrey
    The analysis of surveillance cameras is a critical task usually limited by the people involved in the video supervision devoted to such a task, their knowledge, and their judgment. Security guards protect other people from different events that can compromise their security, like robbery, extortion, fraud, vehicle theft, and more, converting them to an essential part of this type of protection system. If they are not paying attention, crimes may be overlooked. Nonetheless, different approaches have arisen to automate this task. The methods are mainly based on machine learning and benefit from developing neural networks that extract underlying information from input videos. However, despite how competent those networks have proved to be, developers must face the challenging task of defining the architecture and hyperparameters that allow the network to work adequately and optimize the use of computational resources. Furthermore, selecting the architecture and hyperparameters may significantly impact the neural networks’ performance if it is not carried out adequately. No matter the type of neural network used, shallow, dense, convolutional, 3D convolutional, or recurrent; hyperparameter selection must be performed using empirical knowledge thanks to the expertise of the designer, or even with the help of automated approaches like Random Search or Bayesian Optimization. However, such methods suffer from problems like not covering the solution space well, especially if the space is made up of large dimensions. Alternatively, the requirement to evaluate the models many times to get more information about the evaluation of the objective function, employing a diverse set of hyperparameters. This work proposes a model that generates, through a genetic algorithm, neural networks for behavior classification within videos. The application of genetic algorithms allows the exploration in the hyperparameters solution space in different directions simultaneously. Two types of neural networks are evolved as part of the thesis work: shallow and deep networks, the latter based on dense layers and 3D convolutions. Each sort of network takes distinct input data types: the evolution of people’s pose and videos’ sequences, respectively. Shallow neural networks are generated by NeuroEvolution of Augmented Topologies (NEAT), while CoDeepNEAT generates deep networks. NEAT uses a direct encoding, meaning that each node and connection in the network is directly represented in the chromosome. In contrast, CoDeepNEAT uses indirect encoding, making use of cooperative coevolution of blueprints and modules. This work trains networks and tests them using the Kranok-NV dataset, which exhibited better results than their competitors on various standard metrics.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia