Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Electrohydrodynamic encapsulation of probiotics in heat-resistant mMicrocapsules for applications in the food industry(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-06) Toro Galárraga, David Alejandro; OLVERA TREJO, DANIEL; 269684; Olvera Trejo, Daniel; RR; Soría Hernández, Cintya Geovanna; Elías Zúñiga, Alex; School of Engineering and Sciences; Campus Monterrey; Martinez Romero, OscarProbiotics are an important part of functional foods and are defined as living microorganisms that confer health benefits to the host. Viable probiotics are, however, significantly destroyed during food thermal processing and in the stomach due to harsh digestive conditions. The challenge is to improve the survival of probiotic cells during manufacture, storage, and the passage through the gastrointestinal tract of the host in order to exert their health benefits. Various microencapsulation techniques have been used to protect probiotics against harsh conditions, however, these processes have low encapsulation efficiency, low yield and high energy consumption. On the other hand, electrospray microencapsulation can be used to produce capsules ranging from the micro to the sub-micron sizes, works at room temperature and has high encapsulation efficiency with narrow particle size distribution. The objective of this project was to create heat-resistant microcapsules (HRM) via electrospraying. To accomplish this, core and shell solutions were synthesized to perform encapsulation with metallic and 3D printed electrospray sources to increase the production rate. HRMs of 394.7±44.50 μm in diameter were obtained while physicochemical characterization shows a combination of parameters of both biopolymers, which is attributed to the formation of bonds between alginate and zein in the esterification process. The thermogravimetric analysis also shows an improvement in thermal properties, reducing weight loss due to material degradation at 250 ºC from 40% to 19%. This technology is a promising technology for probiotics encapsulation and fortification of foods thermally processed.
- New Generation of 3D printed electrospray sources for microencapsulation in biomedical applications(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-14) Benjamin de Jesus, Benjamín Evani; Zúñiga, Alex Elías; Olivera Trejo, Daniel; Martínez Romero, Oscar; García López, ErikaAdditive manufacturing by Digital Light Processor stereolithography (DLP-SLA) has shown a great potential to create high-density microfluidic devices due to it offers high resolution and relatively low-cost. In this work, the fabrication of 3D printed coaxial electrospray sources with a high density of emitters are reported by using DLP-SLA technology. The 3D printed electrospray sources have also proven to work correctly as a source of microencapsulation. To accomplish the objectives of the study, it was addressed in three sections primarily. First, the influence of the involved parameters on the final properties of printed microchannels was evaluated by the analysis and characterization of this promising additive manufacturing technology. Second, based on its maximum printing capabilities, multiplexed electrospray sources were designed. To manufacture suitable channels with diameters up to 160 µm, it was key to establish the smallest dimensions of the new devices, which were successfully printed with 41 and 57 coaxial emitters respectively. Finally, Vitamin D and alginate hydrogel were used to produce core-shell microparticles as an initial exploration in the encapsulation of biomedical substances via coaxial electrospraying. The accurate encapsulation was dependent on the flow rate, applied voltages, and mainly on the concentration of alginate solution.