Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Study on the influence of geometrical parameters to enhance heat transfer in a finned cylindrical segment, incorporating vortex generators.(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-25) Chilaca Tarango, Anuar Samuel; CHILACA TARANGO, ANUAR SAMUEL; 751168; GARCIA CUELLAR, ALEJANDRO JAVIER; 121668; López Salinas, José Luis; Rivera Solorio, Carlos Iván; Campus MonterreyThe present work addresses the simulation of geometries considering forced convection of turbulent flow for the thermal optimization of a generator of a water-ammonia absorption refrigeration system, for which purpose, several simulations were carried out on ANSYS Fluent, varying the geometric parameters in order to define the optimal design for the generator. In the first part, a geometrical analysis of the previously geometry proposed for the construction of the generator is presented, evaluating those geometrical factors that enhance the heat transfer. The results obtained from the simulations are used to calculate the global heat transfer coefficient by convection, as well as the average Nusselt number. High heat transfer coefficients were found where geometries shows specific arrangements that modify the evolution of the flow, those changes in the flow contributes to the higher mixed and to the heat transfer. The second part of the thesis analyze the modification of arrangement and evaluate the introduction of different types of fin geometries. Realistic and manufacturable geometries were considered for maximization of thermal heat transfer coefficient and also the minimization of friction forces. In order to compare these various geometries, a set of standard conditions were required. Finally, the thesis contemplates the incorporation of Vortex Generators (VG) to enhance the heat transfer along the generator. Vortex generators is one of the passive methods to generate streamwise vortices that create high turbulence in fluid flow over heat transfer surfaces. VG have shown to be an effective way to increase the heat transfer coefficient, decreasing the thermal resistance of the sublayer adjacent to the wall immediately where the viscous effects of the sublayer are dominant. The increase of turbulence of the fluid flow in the main stream have shown positive effects on the heat transfer. The thesis evaluates the present research of VG and contemplate the simulation of the incorporation of an array of VG over the surface of a previously finned- cylindrical geometry of generator, contrasting the immersion of the VG's to baseline geometry, the effects on the pressure drop are also studied. Subsequently, the incorporation of a modified annular winglet vortex generator over the generator surface was also evaluated. The results were compared to the no VG fin type geometry. The results show that the heat transfer increases considerably, but an increase on the pressure drop is also observed.
- Study of heat transfer in tubular-panel and spray cooling systems applied to the electric arc furnace walls(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-15) Contreras-Serna, Josué; Rivera Solorio, Carlos Iván; García Cuéllar, Alejandro Javier; López Salinas, José LuisThis project consists in a heat transfer study in the electric arc furnace (EAF) walls, focused in the tubular-panel and spray cooling systems for the EAF located at Ternium-Guerrero plant, in the northeastern region of Mexico. The tubular-panel system is the one currently used to keep the walls cooled, composed of a total of 14 tubular panels. More dangerous accidents in the EAF operation, are the water steam explosions, which occur due to water leaks in the piping system inside the furnace. Spray cooling is given from the outside of the EAF, reducing the possibility of water directly impacting molten steel. The main purpose of this research is to know the operational conditions of both systems, verifying if the spray cooling system could be as good as the tubular system for the removal of heat on walls, efficiency and keeping the walls at low temperatures. The following procedures were used to estimate the water flow distribution in the cooling systems and the heat transfer in the walls. Piping network configurations are proposed for both systems. Models that consider surface-energy balances between different layers of the EAF’s walls and the heat radiated onto the walls by the electric arc and the molten-slag surface are developed herein. Conventional correlations were used for determining the heat transfer coefficients inside the tubular panels (Internal convection) and alternate correlations for determining the heat transfer coefficients for the external convection (spray cooling). Additional scenarios were done trying to improve the operational conditions and heat removal of each system. Water flow regulation by valves in each panel in tubular system and jet nozzles are used instead of spray nozzles in the spray system to verify the effectiveness of the spray cooling. The study was conducted via a parametric analysis in which the principal factors governing the process—the arc coverage and slag-layer thickness adhering to the walls—were varied. The results of the tubular-panel system were compared with experimental measurements of the outlet water temperature in each panel, showing a good approximation; allowing us to predict the operational conditions of the furnace. For both systems the optimal operating condition of the EAF, is when the arc is completely covered and the maximal thickness of the slag-layer that can be reached is around to 4.5 cm, it does that energy losses to decrease significantly and to keep walls at low temperatures. The minimal temperature difference between the inlet and final flow is around to 3 K. The spray cooling system operates with a lower heat removal capacity and pressure than the tubular-panel, causing that inner wall surface temperature to be approximately 20 degrees higher than when using the tubular system for critical operating conditions. Under optimal operating conditions each nozzle removes approximately 8.5 kW of thermal power. It is concluded that each cooling system has different temperatures and heat-removal capacity, which are highly dependent on the water flow within them. It is proved that slag-layer thickness and arc-coverage factors significantly affect the safe operation of the EAF, as well as its energy efficiency. This is a semi-analytical study; the equations of models were obtained analytically, and an equation-solver program is necessary to treat the non-linear equations obtained. Relatively few computational resources are required for this method.