Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Convergence of Industry 4.0 and Regenerative Engineering to boost development of scaffolds created by hybrid additive manufacturing(2017-12-05) Camargo Camrgo, Belinda; Rodríguez González, Ciro Ángel; Romero Díaz, David CarlosIndustry 4.0 and its underlying technologies, such as Internet of Things (IoT) and Cyber-Physical Systems (CPS), are usually portrayed as a way to enable communication in a workshop between the machinery and an intelligent control system, handle consumer demand for customized products, achieve a near-zero defect manufacturing process, and handle materials, energy consumption, and waste more efficiently, amongst others. Case studies on how the automotive, electronics, or aerospace industry benefit from Industry 4.0 implementation are readily available and surely, there are more to come. By contrast, scaffolds of Regenerative Engineering, are still in Research and Development and yet to be approved as a commercial regenerative procedure. A thorough analysis of the requirements was developed and the product manufacturing phases were modeled using Unified Modeling Language (UML). Business, structure, activity, class, and sequence diagrams, amongst others, are modeled using this standard and an ontology that converges Industry 4.0 technologies applied on Regenerative Engineering is established under the Ontology Web Language Description Logic (OWL-Dl). An architecture to augment a scaffold manufacturing cell with Industry 4.0 technologies is proposed. By using smart sensors, actuators, and the information they generate, a database with material and process variables is populated. This database can then be analyzed by smart algorithms to find the most effective parameters to manufacture a successful scaffold for tissue regeneration. Initial testing shows the feasibility of the proposed architecture and its ability to store relevant information of the produc
- Development of methodological process to customize and manufacture cranial implants with high density polyethylene by means of Single Point Incremental Forming(2017-04) Salas Luna, Eduardo; Martínez Romero, Oscar; Perales Martínez. Imperio Anel; Zuñiga, Alex Elías; Caro Osorio, EnriqueThe aim of the present thesis is to evaluate the feasibility of manufacturing customized cranial implants applying the Single Point Incremental Forming (SPIF) technique on a bio compatible polymer such as High Density Poly Ethylene (HDPE). The following research focuses on a CAD/CAM aided process that will help to find the optimal parameters to secure the best precision of the manufactured piece. This technique offers a sustainable, cheap and highly accurate process that will allow a bigger number of patients the possibility to have access to a high quality, aesthetic prosthesis that will improve their life quality