Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
28 results
¡Quiero depositar mi trabajo!Search Results
- Mechatronic design of a fast-non-contact measurement system for inspection of castings parts in production line(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2019-05-11) Guamán-Lozada, Darío F.; Ahuett-Garza, Horacio; Kurfess, Thomas R.; Urbina Coronado, Pedro Daniel; Orta Castañon, PedroProduct recalls for suppliers (Tier 1-2-3) and OEM represents high financial losses and reputation damage. This has motivated manufacturers to inspect 100% of the specifications of 100% parts produced to avoid liability risks. In general, the manufactured parts are measured in CMM machines, the main problem is that it takes a long time to make the measurement. Therefore, CMM machines cannot be installed in a continuous line process. This problem has led industries to install gauging machines to have full control over their production. Gauging machines are not flexible, a number of sensors equal to the number of targets to be inspected is needed, complicating the maintenance and increasing the cost. Finally, most gauges are of the go-no go type, which only validates whether the characteristics comply with a standard. In addition, due to the arrival of the concept of industry 4.0, companies have seen the need to develop fast, reliable and accurate inspection machines capable of sending proper information about themselves or the product to the cloud. This work presents a new measurement system for an In-Line die-casting process. The main characteristic is the use of a linear motor and non-contact measurement technology for fast and reliable measurements. Also, the machine uses a novel kinematics coupling configuration to allow easy, fast, and accurate positioning of the part in the measurements area. To be compatible with Industry 4.0 the inspection machine is equipped with sensors to send process information to the cloud like operation temperature, vibrations, and dynamic machine behavior.
- Wavelets for spindle health diagnosis(2018-12-04) Villagómes Garzón, Silvia Cristina; Morales Menéndez, Rubén; Vallejo Guevara, Antonio; Hernández Alcántara, DianaIndustrial development and customer demands have increased the need to look for high-quality products at low cost and, at the same time, ensure safety during manufacturing. As a result, rotary machinery and its components have become increasingly complex, making their repairs more expensive. Therefore, many efforts must be focused in preventing breakdowns in machines, for which real-time fault diagnosis and prognosis are mandatory. Considering that the element most prone to failure in a machining center is the spindle, and with it its bearing system, the diagnosis of failures of these elements is of paramount importance. To ensure the safe operation of the bearing, some methods of fault detection have been developed based on different techniques. One of the most commonly used is vibration analysis. There are several difficulties when dealing with analyzing vibration signals, they are complex and non-stationary signals with a large amount of noise. Conventional analysis have not been able to solve this problem, thus, alternative methods such as Wavelet Transform have been gaining ground. The following research is focused in detecting bearing faults, as well as the main shaft faults, which eventually also lead to bearing damage, by using wavelets. Different signals, presenting distinct bearing fault conditions, of different data sets are evaluated for validating the proposed methodology. An exhaustive analysis has been developed for selecting the best parameters of this methodology. As results, an improvement around 20% in magnitude of bearing fault frequency peaks was found, compared to the traditional methodology. The proposal of giving more weight to high energy components allows increasing these fault frequencies, as well as reducing low frequency noise. This provides a great advantage in pursuit of an automatic fault detection. An industrial approach was also validated, by proving that the proposed methodology is more immune to noise. Even though, the magnitudes of the bearing fault peaks are diminished by noise, a comparison between the proposal and the traditional methodology reveal an increase of approximately 70% of those magnitudes. Demonstrating that the fault information is barely attenuated by noise. Also, an early diagnosis was proved, which could benefit future studies of fault prognosis. Finally, the filtering property of wavelet decomposition is exploited to limit the frequencies of the signal to few harmonics of the shaft speed. This with the aim of restricting the spectrum for detecting other faults, that mainly affect the spindle shaft, which are diagnosed by analyzing speed harmonics and subharmonics. Thus, a complete methodology is proposed to deal with the main spindle faults.
- Study on the influence of geometrical parameters to enhance heat transfer in a finned cylindrical segment, incorporating vortex generators.(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-25) Chilaca Tarango, Anuar Samuel; CHILACA TARANGO, ANUAR SAMUEL; 751168; GARCIA CUELLAR, ALEJANDRO JAVIER; 121668; López Salinas, José Luis; Rivera Solorio, Carlos Iván; Campus MonterreyThe present work addresses the simulation of geometries considering forced convection of turbulent flow for the thermal optimization of a generator of a water-ammonia absorption refrigeration system, for which purpose, several simulations were carried out on ANSYS Fluent, varying the geometric parameters in order to define the optimal design for the generator. In the first part, a geometrical analysis of the previously geometry proposed for the construction of the generator is presented, evaluating those geometrical factors that enhance the heat transfer. The results obtained from the simulations are used to calculate the global heat transfer coefficient by convection, as well as the average Nusselt number. High heat transfer coefficients were found where geometries shows specific arrangements that modify the evolution of the flow, those changes in the flow contributes to the higher mixed and to the heat transfer. The second part of the thesis analyze the modification of arrangement and evaluate the introduction of different types of fin geometries. Realistic and manufacturable geometries were considered for maximization of thermal heat transfer coefficient and also the minimization of friction forces. In order to compare these various geometries, a set of standard conditions were required. Finally, the thesis contemplates the incorporation of Vortex Generators (VG) to enhance the heat transfer along the generator. Vortex generators is one of the passive methods to generate streamwise vortices that create high turbulence in fluid flow over heat transfer surfaces. VG have shown to be an effective way to increase the heat transfer coefficient, decreasing the thermal resistance of the sublayer adjacent to the wall immediately where the viscous effects of the sublayer are dominant. The increase of turbulence of the fluid flow in the main stream have shown positive effects on the heat transfer. The thesis evaluates the present research of VG and contemplate the simulation of the incorporation of an array of VG over the surface of a previously finned- cylindrical geometry of generator, contrasting the immersion of the VG's to baseline geometry, the effects on the pressure drop are also studied. Subsequently, the incorporation of a modified annular winglet vortex generator over the generator surface was also evaluated. The results were compared to the no VG fin type geometry. The results show that the heat transfer increases considerably, but an increase on the pressure drop is also observed.
- Environmental impact of conventional manufacturing and additive manufacturing in lifecycle of turbine blade(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-16) Torres Carrillo, Sharon Andrea; Rodríguez González, Ciro Ángel; Siller Carrillo, Héctor Rafael; Vila Pastor, Carlos; Vega, YadiraThe exponential growth of additive manufacturing technologies is not only improving production processes to achieve functional requirements for products, but it could also help to minimize environmental impacts. In order to align a green product lifecycle management vision, companies need to implement emerging technologies and define a set of metrics that measure the benefits of the change. Each product requires a particular and optimized manufacturing process plan, and each production phase must achieve a significant reduction of critical metrics for the whole Life Cycle Assessment (LCA). This study provides a comprehensive and comparative LCA of two manufacturing process plans for the case study of an aircraft engine turbine blade. The first process consists of a combination of Investment Casting and Precision Machining and the second consists in the replacement of Investment casting by Selective Laser Melting as an emergent process for near net shape fabrication. The collected data for the comparison includes Global Warming Potential (GWP), Acidification Potential (AP), Ozone layer Depletion Potential (ODP), Human Toxicity Potential (HTP), Ecotoxicity and Abiotic Depletion Potential (ADP).
- Hilbert-Huang transform based methodology for bearing fault detection(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-16) Campos García, Rubén; Vallejo Guevara, Antonio Jr.; Morales Menéndez, Rubén; Ibarra Zárate, David IsaacRotating machinery is of great importance for manufacturing industry, and therefore huge investments for their acquisition are made every year. Machine preservation plays an important role in the exploitation of this resource. Rotating machines are more susceptible to certain types of faults, investigations report that at least 42 % of the root causes of failure in rotating machinery are related with bearings. To detect the bearing condition many techniques have been developed. One of the most reliable is vibration analysis. The Hilbert-Huang transform (HHT) has been used for vibration analysis and has gained attention in recent years, a topic of controversy in this method is the selection of the Intrinsic Mode Functions (IMFs) with fault information. Statistical parameters can be used to describe the characteristics of vibration signals, this attribute can be exploited to select the IMFs. There are many time domain features used for signal analysis. In this research, a study of 17 statistical parameters was made to determine which one is the best to represent IMFs with fault information. As a result of this analysis a new methodology based on HHT is proposed. This methodology deals with the IMF selection with the use of KR (Kurtosis x RMS) to detect the IMFs with fault information, and can be used to detect incipient bearing faults. The proposed methodology was validated with 18 signals from the Case Western Reserve University (CWRU), Tian-Yau Wu, and the society for Machinery Failure Prevention Technology (MFPT Society) databases. For the 18 analyzed signals, only one IMF was wrongly selected. The cause of this error was the end defect produced in the EMD, this caused the KR amplitude to increase even tough the IMF did not have fault information. The results on the Envelope spectrum from 14 signals were clear with fault components with large amplitude. For the remaining four signals the results on the Envelope spectrum was noisy, but the fault fault components were distinguishable.Rotating machinery is of great importance for manufacturing industry, and therefore huge investments for their acquisition are made every year. Machine preservation plays an important role in the exploitation of this resource. Rotating machines are more susceptible to certain types of faults, investigations report that at least 42 % of the root causes of failure in rotating machinery are related with bearings. To detect the bearing condition many techniques have been developed. One of the most reliable is vibration analysis. The Hilbert-Huang transform (HHT) has been used for vibration analysis and has gained attention in recent years, a topic of controversy in this method is the selection of the Intrinsic Mode Functions (IMFs) with fault information. Statistical parameters can be used to describe the characteristics of vibration signals, this attribute can be exploited to select the IMFs. There are many time domain features used for signal analysis. In this research, a study of 17 statistical parameters was made to determine which one is the best to represent IMFs with fault information. As a result of this analysis a new methodology based on HHT is proposed. This methodology deals with the IMF selection with the use of KR (Kurtosis x RMS) to detect the IMFs with fault information, and can be used to detect incipient bearing faults. The proposed methodology was validated with 18 signals from the Case Western Reserve University (CWRU), Tian-Yau Wu, and the society for Machinery Failure Prevention Technology (MFPT Society) databases. For the 18 analyzed signals, only one IMF was wrongly selected. The cause of this error was the end defect produced in the EMD, this caused the KR amplitude to increase even tough the IMF did not have fault information. The results on the Envelope spectrum from 14 signals were clear with fault components with large amplitude. For the remaining four signals the results on the Envelope spectrum was noisy, but the fault fault components were distinguishable.
- Characterization of arc extinction in direct current residential circuit breakers(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-15) Bautista Cruz, Julio César; Viramontes Brown, Federico Ángel; Rivera Solorio, Carlos Iván; Gutiérrez Villanueva, Efrain; Suarez Guevara, José CarlosBreak the current in a direct current (DC) network is a challenging theme since the current does not exhibit a zero crossing point, making it difficult to interrupt. Regardless of the method, the physical effect of switching is the formation of an electric arc, causing high levels of temperature, strong magnetic fields, current of several tens of KA, added to mechanical stress and overpressure on the walls. Due to this reason, physical phenomena should be studied to determine a suitable design. This thesis starts by understanding the arc in alternating current (AC), then proceeds to DC. A theoretical description of the electric arc is outlined, based on plasma physics. The Magneto-Hydrodynamic (MHD) model is proposed, which allows modeling a plasma as an electric fluid, allowing coupling the equations of fluid mechanics and magnetic fields.
- Process Intensification of antisolvent crystallization using a coiled flow inverter(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-15) Benítez Chapa, Andrea Georgina; Álvarez Guerra, Alejandro Juan; López Guajardo, Enrique Alfonso; Montesinos Castellanos, AlejandroThe current scenario of the pharmaceutical industry, where final product quality has a fundamental priority, justifies the need for process intensification in order to shift from inefficient conventional batch production to continuous production methods. An alternative to reducing energy consumption in the purification step of pharmaceutical products is antisolvent continuous crystallization, a separation and purification technique that aims to produce particles of controlled size and purity by controlling the antisolvent addition rate, on which crystal birth and growth rates depend. This work experimentally studies the antisolvent continuous crystallization process of flufenamic acid, an active pharmaceutical ingredient (API), using the coiled flow inverter (CFI) as a novel crystallization device. Two strategies were studied as means to control crystal size distribution in the CFI technology: multistage antisolvent addition and a varied number of the reactor’s 90-degree bends. Experimental results show that mean crystal size of the studied API, increased with an increasing number of antisolvent addition points, thus suggesting a growth dominated process. On the other hand, mean crystal size decreased as the number of 90-degree bends increased, suggesting a nucleation dominated process. A narrower crystal size distribution (CSD) was also observed with an increased number of 90-degree bends. When compared to the CFI, mean crystal size and coefficient of variation were, in average, 1.8 and 3.5 times larger for the Kenics type crystallizer, respectively. This can be attributed to the high supersaturation induced by the effective mixing. Using the Population Balance Equation, as a mathematical model to describe the plug flow crystallization, crystal mass population density was calculated and compared with the obtained experimental data. High regression coefficients were obtained (0.96-0.99), which indicate that near plug flow behavior was achieved. Consequently, undesired crystallization process phenomena such as agglomeration, dissolution and breakage were successfully avoided, as they can lead to operational problems and a broad CSD. Process intensification (PI) was measured considering mean crystal size (µm) and coefficient of variation (CV) as product quality indicators. On the other hand, crystallization and pre-expansion temperatures, as well as extraction pressure, were considered as both energy savings and operational safety indicators. Six crystallizers of flufenamic acid were compared (batch, reactor without static mixers, Kenics type crystallizer, Kenics optimized, helical coil and RESS) to a CFI with three 90-degree bends. The CFI was the most intensified technology of all six, with IFtotal ranging from 2 (helical coil) to 392 (RESS). For this reason, it can be concluded that the main objective of this thesis, which was to intensify antisolvent crystallization processes, was achieved.
- Design and Implementation of a UAV-based Platform for Air Pollution Monitoring and Source Identification(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-15) Yungaicela Naula, Noé Marcelo; Garza Castañón, Luis Eduardo; Ponce Cuspinera, Luis; Vargas Martínez, AdrianaThis document presents the thesis proposal for obtaining the Master of Science in Intelligent Systems. Technology, industry and government forecasts coincide that the planet will withstand a maximum of 50 years at the rate of current air pollution. Air pollution has reached critical levels causing major impacts on health and economy across the globe. Environmental monitoring and control agencies, as well as industries, require a reliable and cost-effective tool that is easy to deploy where required to assess contamination levels, and on that basis, take the necessary actions. Current measurement methods using pressurized balloons, satellite imagery, or earth stations result in considerable investment, as well as providing low spatial and temporal resolution. There are also systems for measuring air pollution using Unmanned Air Vehicles (UAV), which are financed by large government institutions or international organizations whose budget and resources allow costly implementations. Other related works are limited to the capture of atmospheric data using the UAVs and offline analysis. This work presents the design and implementation of an open-source UAV-based platform for measuring atmospheric pollutants and an algorithm for the localization of the air pollutant sources with the use of a UAV and in-line processing of the pollutants data. The development of the UAV-based platform includes: the UAV mounting and characterization and the control system to guide the navigation of the vehicle, the appropriate sensors selection and integration to the UAV, the data transmission from the sensors onboard the UAV to the ground station, and the implementation of the user interface which is based on a web design. The algorithm for the air pollutant source localization is based on a metaheuristic component, to follow the increasing gradient of the pollutant concentration, and complemented with a probabilistic component to concentrate the searching to the most promising areas in the targeted environment. The results of this work are: Outdoors experiments of the UAV-based platform for the air pollutant monitoring and indoor experiments to validate the algorithm for the source localization. The results show effectiveness and robustness of the UAV-based platform and of the algorithm for the source identification.
- Operation of a photovoltaic system in the mexican electricity market(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-15) Gutiérrez Andrews, Carlos Alberto; Viramontes Brown, Federico Ángel; Hernández Ramírez, José Martín; Llamas Terrés, Armando Rafael; Gutiérrez Villanueva, EfrainTaking as a study case a Photovoltaic (PV) System installed in the Development and Innovation Center of Schneider Electric a whole study was realized. The main objective was to analyze the operation of a PV system in the Mexican Electricity Market and develop tools that can make easier to evaluate the performance of the installation. It produces less than 0.5 MW, in the current regulation is consider as Distributed Generation (DG). This kind of Power Plants (PP) can be interconnected to the grid and the owner has three contract options: Net Metering, Net Billing and Total Sale of Energy. In this case the better is Net Metering because the building consumes all the energy produced, but by having a contract with a supplier this field could earn Clean Energy Certificates (CEL). Three tools were developed to evaluate the economic and technical performance. The first tool is to graph the downloaded data acquired by the monitoring system. That daily data cannot be graph as detailed by the inverter’s provided interface after a day as if the user downloads the information. The second tool is required to find the greatest values of Irradiance, Temperature or Power in a month. When this tool is feed with the files of the month, each file will be paste in a new Excel workbook’s sheet, but in the first sheet the user, has a recapitulation per day of the greatest values. With all this ordered information could be prepare a generation profile of the area, and that stats can be used in future investment decision and forecasting. Finally, the third tool is dedicated to calculated financial indicators such as Payback and IRR. Some scenarios were studied and after applying some stimulus offered by the government that are reflected in the taxes payment, better results were obtained. With this tool is possible run scenarios and evaluate the profitability of new investments.
- NetMovExt: a dynamic extensor(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-15) Armenta Gastelum, Edson Jacobo; Vargas-Rosales, César; Fernández de las Heras, Leyre Azpilicueta; Martínez Herrera, Alberto FranciscoNowadays, there is still an open field in network simulators dedicated to working VANETs. They have been introduced to add some networking characteristics by acting as adapters or extension between mobility tool and network module such as ASH, OVNIS, VEINS, VnetIntSim, TraN, GrooveSim. In this thesis, we propose a platform focused on VANETs atmosphere. This contemporary simulator works with two types of communication: Vehicular to Vehicular (V2V) in a multiple-hop scheme and Vehicular to Infrastructure to Vehicular (V2I) in a single-hop scheme. We have aimed our work to have a flexible architecture for networking side where other services such as modules can be added in parallel. In fact of that, we integrated a module with our own developed testing routing protocol based on geographical position. Additionally, we included a beta propagation module to show flexibility of structure. A customizable GUI was integrated for easy interaction with user
- «
- 1 (current)
- 2
- 3
- »

