Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 2 of 2
  • Tesis de maestría
    Deep learning framework to predict and generate new fluorescent molecules from experimental data
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2025-07) Azizi, Mina; Aguirre Soto, Héctor Alán; emipsanchez; Ray, Mallar; Bernal Neira, David Esteban; Mendoza Cortés, José Luis; School of Engineering and Sciences; Campus Monterrey; Flores Tlacuahuac, Antonio
    Fluorescent molecules play important roles in biological imaging, diagnostics, and materials science. However, identifying efficient and effective fluorophores remains challenging, as traditional trial-and-error experimentation and in silico computations are both costly and time-consuming. To address this, this thesis presents a deep learn- ing approach to streamline the discovery process by predicting optical properties and generating novel fluorescent molecules directly from experimental data. The study is based on FluoDB, a publicly available dataset collected from the literature, containing over 55,000 fluorophore–solvent pairs with experimentally measured optical prop- erties. Graph Convolutional Network (GCN) models were trained to predict four key optical properties and effec- tively captured complex structure–property relationships, achieving R² values ranging from 0.49 to 0.87 across the different targets. A Conditional Variational Autoencoder (CVAE) was also implemented to generate novel fluores- cent molecules based on solvent identity and target absorption range. In total, 2573 valid and structurally diverse molecules were generated, with a variety of predicted optical behaviors. Together, the predictive model and genera- tive models provide a useful and data-driven approach to accelerate exploration and design of functional fluorescent materials.
  • Tesis de maestría / master thesis
    Maturity recognition and fruit counting for sweet peppers in greenhouses using deep Learning neural networks
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-01-05) Viveros Escamilla, Luis David; Gómez Espinosa, Alfonso; mtyahinojosa, emipsanchez; Cantoral Ceballos, José Antonio; Escuela de Ingenieria y Ciencias; Campus Querétaro; Escobedo Cabello, Jesús Arturo
    This study presents an approach to address the challenges involved in recognizing the maturity stage and counting sweet peppers of varying colors (green, yellow, orange, and red) within greenhouse environments. The methodology leverages the YOLOv5 model for real-time object detection, classification, and localization, coupled with the DeepSORT algorithm for efficient tracking. The system was successfully implemented to monitor sweet pepper production, and some challenges related to this environment, namely occlusions and the presence of leaves and branches, were effectively overcome. The algorithm was evaluated using real-world data collected in a sweet pepper greenhouse. A dataset comprising 1863 images was meticulously compiled to enhance the study, incorporating diverse sweet pepper vari eties and maturity levels. Additionally, the study emphasized the role of confidence levels in object recognition, achieving a confidence level of 0.973. Furthermore, the DeepSORT algo rithm was successfully applied for counting sweet peppers, demonstrating an accuracy level of 85.7% in two simulated environments under challenging conditions, such as varied lighting and inaccuracies in maturity level assessment.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia