Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Modification of photosensitive resin with 0D and 2D nanoparticles towards printing scalability(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-12-05) Meza Diarte, Salvador Alejandro; Sustaita Narváez, Alan Osiris; Rodríguez Hernández, Gerardo; Segura Cárdenas, Emmanuel; Melo Máximo, Dulce Viridiana; School of Engineering and Sciences; Campus Monterrey; Iturbe Ek, JackelineComposite materials, recognized for their ability to synergize the properties of multiple constituents, have become indispensable in modern engineering and manufacturing. Polymer composites, a prominent category within this field, are particularly valued for their lightweight, cost-effective nature, and ease of processability. This study investigates the integration of composite materials with vat polymerization 3D printing, focusing on the development of advanced polymer-based nanocomposites with tailored functional properties, by modifying commercially available photosensitive resins through ultrasonic dispersion of 0D and 2D nanoparticles: silicon dioxide (SiO2) and organo-modified clay Cloisite 30B (C30B), respectively. The SiO2 nanoparticles were functionalized with alkyl silane groups CTMS and OTS to achieve hydrophobicity. Therefore, this work aims to enhance the hydrophobic and flame-resistant characteristics of 3D printed components. A practical experimental methodology for the resin modification by ultrasonic dispersion was developed. The incorporation of functionalized SiO2 achieved intrinsically hydrophobic 3D printed specimens, with contact angle of up to 133°. The incorporation of C30B increased significantly mechanical properties with respect to neat resin, obtaining an increase of 37% in Young’s modulus, 39% in elongation, and 0.95 MPa. It also increased combustion temperature by 12 °C in the formulation with 5% clay concentration. XRD and TEM results confirm a clay exfoliation was achieved after polymerization, and the mechanism was proposed. A Jacob’s cure depth working curve was developed for both modifications to determine their printing parameters as the first step towards printing scalability. UV-Vis analysis confirmed that both modifications preserved the printability of the resins, demonstrating the feasibility of fabricating high-performance nanocomposites using vat polymerization
- Deformation control of sinusoidal lattice metamaterial for application in robotics(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2023-12-05) Mora Gutiérrez, Stephanie; Cuan Urquizo, Enrique; emipsanchez; Pérez Santiago, Rogelio; Román Flores, Armando; Escuela de Ingeniería y Ciencias; Campus MonterreyThis study presents a methodology for controlling deformation in a sinusoidal metamaterial using parametric design, FEM simulation, and 3D printing. The focus is on generating a design where the deformation of the metamaterial can be controlled and thus be able to apply it in a flexible gripper using a sinusoidal metamaterial as base material. The parametric design approach is employed to create a structure of the sinusoidal unit cell, and FEM simulation is used to evaluate its mechanical behavior and compare it with the Experimental testing. The sinusoidal metamaterial is then 3D printed using a flexible TPU filament. Experimental testing also demonstrates the gripper's adaptability and deformation control. The results validate the effectiveness of the design, showing the deformation control of the sinusoidal structure, also improved grip capacity and manipulation capabilities. This study has significant potential for applications in robotics. The combination of generative design, FEM simulation, and 3D printing enables the creation of customized and functional grippers that can adapt to various object shapes and sizes.
- Proof of concept for implementation of integration of additive manufacturing with vision system monitoring aided with a robot arm(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-12-13) Ozorno del Angel, Oscar Alain Gerardo; AHUETT GARZA, HORACIO; 120725; Ahuett Garza, Horacio; emijzarate/puemcuervo; Orta Castañon, Pedro; Urbina Coronado, Pedro; School of Engineering and Sciences; Campus MonterreyIn any process a competitive advantage means in saving of time, money, resources and in a process as 3D printing where many aspects can go wrong in the final part as lack of filament, bad adhesion printing or out of tolerance shapes by bad melting. To avoid some of these errors to happen by detecting them and stop the process of a wrong printing saving time, money and resources also with the potential to be scalable to an industrial process. To achieve this a proposed proof of concept of a semiautomatic 3D printer aided with a robot and a vision system to work autonomously with the least human interaction needed and the ability to do process monitoring to ensure quality in pieces and remove mistaken pieces while in the process save resources, this is achieved by Implementation of a synchrony routine in an arduino with programming, putting together decision making and pick and place operations to reduce human interaction. The main contribution is the implementation and architecture to achieve the synchrony of the three technologies 3D printer, vision system, and a robot arm working together to do a continuous process with inspection in real time in a 3D printer.
- Pre- and post-processing of PET-G 3D prints of honeycomb cellular structure for high energy absorption and surface engineering(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-06) Basurto Vázquez, Olimpia; MEDINA MEDINA, DORA ILIANA; 40536; VALENCIA LAZCANO, ANAI ALICIA; 230234; SANCHEZ RODRIGUEZ, ELVIA PATRICIA; 100483; Medina Medina, Dora Iliana; RR; Valencia Lazcano, Anai Alicia; Stasiak, Joanna; School of Engineering and Sciences; Campus Estado de México; Sánchez Rodríguez, Elvia PatriciaUpon an impact, the resulting energy is manifested through unwanted damage to objects or persons. Therefore, it is essential to improve protective materials such that the system reduces injuries to the involved moving parts by the selection of material properties, design, and manufacturing processes. New materials with enhanced energy absorption capabilities are made of cellular structures. The hexagonal honeycomb structure is one of the most well-known for its space-filling capacity, structural stability, and high energy absorption potential. Additive Manufacturing (AM) technologies have been effectively useful in a vast range of applications. The evolution of these technologies has been studied continuously, focusing on improving mechanical and structural characteristics of the 3D printed models, such as fracture toughness to resist impacts and crack propagation to create complex quality parts that not only satisfy design requirements but also functionality, mechanical properties, and cost. An accessible manufacturing technology, for creating complex structures, is Fused Deposition Modeling (FDM). Nevertheless, this method has adverse surface features related to its layer by layer deposition. In this study, the 3D honeycomb structures of polyethylene terephthalate glycol (PET-G) were fabricated by the FDM method. The process parameters considered are infill density and layer printing orientation. The effectiveness of the design is investigated by performing in-plane compression tests. The set of parameters that produces superior results for better energy absorption capabilities is determined by analyzing the welding between filament layers in the printed object by the FDM technology. The structures were subjected to a vaporized solvent bonding post-processing technique, and the investigation highlights the rationale of interlayer diffusion response and adhesion strength by applying a sol-gel hydrophobic coating. This study utilized roughness, hardness, and contact angle analyses to provide a better understanding of the solvent-polymer interactions to gain insight into the advantages and limitations of this technique.
- Design and fabrication of bioreactors for tissue engineering(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-06) González Abrego, Ana Valeria; Rodríguez González, Ciro A.; lagdtorre/tolmquevedo; Martínez López, José Israel; Trujillo de Santiago, Grissel; Moisés Álvarez, Mario; School of Engineering and Sciences; Campus Monterrey; Dean, DavidTissue engineering (TE) has provided new techniques to create better tissue models, for study or to solve actual medical problems. Combining TE with design and 3D manufacture techniques can achieve devices that improve actual models. 3D tissue models present a diffusion problem that causes cell death because of the lack of oxygen and nutrients and the concentration of cell waste. Proving flow to the constructs can facilitate perfusion and enhance tissue. To do so, this document presents the designs and prototype development of two bioreactors, with the objective of diminishing necrotic core to create relevant implantable bone tissue and a more realistic breast cancer model. Using DLP and commercially available parts, designs were prototyped and validated.