Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Administration of resveratrol and cyclosporine a nanoparticles in a hypoxia/reoxygenation model(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-06) Hernández Fontes, Paulina; LOZANO GARCIA, OMAR; 486173; ; Lozano García, Omar; tolmquevedo, emipsanchez; Mayolo Deloisa, Karla P.; Cholula Díaz, Jorge L.; Santillán Zerón, Moíses; Escuela de Medicina y Ciencias de la Salud; Campus Monterrey; García Rivas, Gerardo de JesúsIschemia reperfusion (I/R) injury remains as a neglected therapeutic target, limiting the benefits on morbidity and mortality of early reperfusion therapies. In this work, two separate poly(lactic-co-glycolic) acid (PLGA) nanoparticles incorporating resveratrol (Resv-NPs), a phytoalexin with strong antioxidant potential, and cyclosporine A (CsA-NPs), a pharmacological inhibitor of the mitochondrial permeability transition pore (mPTP), were developed. These molecules present limitations in their pharmacokinetic profiles which obstruct them from being effectively applied as a treatment for I/R injury. In a H9c2 rat cardiomyoblast model of hypoxia/reoxygenation injury, free drugs were compared with their encapsulated counterparts through the assessment of cell viability. In terms of the latter, Resv-NPs appeared to have an equivalent protection than that of free Resv, however, CsA-NPs appeared to widen CsA narrow therapeutic window under the conditions here reported. mPTP opening was assessed through a Ca2+ retention capacity (CRC) assay, where encapsulation appeared to improve Resv-induced inhibition of pore opening at a concentration of 0.1 μM, while both free and encapsulated CsA groups appeared to prevent mPTP opening. The potential in vivo applications of these nanoformulations as well as the perspectives of this work are described.
- Characterization of the cytotoxicity of graphene oxide and reduced graphene oxide in hypertrophic cardiomyocytes(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-06-15) Luna Figueroa, Estefanía; GARCIA RIVAS, GERARDO DE JESUS; 43362; García Rivas, Gerardo de Jesús; emipsanchez/puemcuervo; Castorena Torres, Fabiola; Aguirre Tostado, Francisco Servando; Lozano García, Omar; Escuela de Medicina y Ciencias de la Salud; Campus Monterrey; Contreras Torres, Flavio FernandoGraphene oxide (GO) and reduced graphene oxide (RGO) are carbon nanomaterials, which stand out for their industrial and biomedical use due to their extraordinary physicochemical properties. Nevertheless, possible health risks call into question the benefits derived from its use. In particular, our interest is focused on cardiovascular tissue. Accumulation of particles in the myocardium may be feasible in this type of tissue, a risk that is more severe in tissues with a predisposition to damage. Even at low concentrations of particles, the risk ratio indicates the possibility of cardiometabolic disorders. The present study analyzes the cytotoxicity of GO and RGO in healthy cardiomyoblasts and cardiomyoblasts with cellular damage, using a pathological model of angiotensin II-induced hypertrophy. From the results obtained, we proposed possible mechanisms of cellular damage.