Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de maestría / master thesis
    Harnessing machine learning for short-to-long range weather forecasting: a Monterrey case study
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-05) Machado Guillén, Gustavo de Jesús; Cruz Duarte, Jorge Mario; mtyahinojosa, emimmayorquin; Filus, Katarzyna; Falcón, Jesús Guillermo; Ibarra, Gerardo; Departamento de Ciencias Computacionales; Campus Monterrey; Conant, Santiago Enrique
    Weather forecasting is crucial in adapting and integrating renewable energy sources, particularly in regions with complex climatic conditions like Monterrey. This study aims to provide reliable weather prediction methodologies by evaluating the performance of various traditional Machine Learning models, including Random Forest Regressor (RFR), Gradient Boosting Regressor (GBR), Support Vector Regressor (SVR), and Recurrent Neural Networks (RNN) such as SimpleRNN, Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Cascade LSTM, Bidirectional RNNs, and a novel Convolutional LSTM/LSTM architecture that handles spatial and temporal data. The research employs a dataset of historical weather data from Automatic Weather Stations and Advanced Baseline Imager Level 2 GOES-16 products, including key weather features like air temperature, solar radiation, wind speed, relative humidity, and precipitation. The models were trained and evaluated across different predictive ranges by combining distinct sampling and model output sizes. This study’s findings underscore the effectiveness of the Cascade LSTM models, achieving a Mean Absolute Error of 1.6 °C for 72-hour air temperature predictions and 85.79 W/m2 for solar radiation forecasts. The ConvLSTM/LSTM model also significantly improves short-term predictions, particularly for solar radiation and humidity. The main contribution of this work is a comprehensive methodology that can be generalized to other regions and datasets, supporting the nationwide implementation of localized machine-learning forecasting models. This methodology includes steps for data collection, preprocessing, creation of lagged features, and model implementation, as well as applying distinct approaches to forecasting by using autoregressive and fixed window models. This framework enables the development of accurate, region-specific forecasting models, facilitating better weather prediction and planning nationwide.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia