Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de maestría
    Defect detection with predictive models in the galvanizing process
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-12-04) Villareal Garza, Diego; ; Preciado Arreola, José Luis; tolmquevedo; Tercero Gómez, Víctor Gustavo; Chee González, Carlos Arnoldo; School of Engineering and Sciences; Campus Monterrey
    In the steel industry, having better control over the final mechanical properties of the steel coils is something highly desired by companies, as this would allow them to reduce the number of defective products they manufacture and reduce the costs associated with them. In a galvanizing line, modeling the yield strength and elongation properties of steel coils can be done before subjecting the coils to the galvanizing process, therefore preventing the waste of zinc, and improving the overall quality control of the line. In this thesis, an ensemble of two quantile random forest regressors was employed to predict the mechanical properties of galvanized steel coils using real-life data from a steel manufacturing company in order to identify defective and non-defective products. The ensemble was designed with goal-specific components in order to optimize the false negative rate and false positive rate of the model. Out of the six clusters of data built from the dataset, four were properly modeled with this approach, while one was best modeled with an individual quantile random forest regressor. Results revealed that a combination of chemistry, segmentation, previous processes, and galvanizing process parameters are required to effectively predict the yield strength and elongation properties. Additional testing of this ensemble model in different industrial contexts and with different performance metrics is recommended to further validate its efficacy.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia