Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de maestría
    Anomaly detection in a cost-effective conveyor belt testing system
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-09) Solórzano Souza, Ana Paula; Navarro Durán, David; mtyahinojosa, emipsanchez; Galluzzi Aguilera, Renato; Sotelo Molina, Carlos Gustavo; Navarro Durán, David; School of Engineering and Sciences; Campus Ciudad de México
    The industrial manufacturing sector faces significant challenges regarding energy efficiency and operational sustainability, particularly in the management of motor driven systems such as conveyor belts. While traditional diagnostic methods effectively identify faults, a critical gap remains in closing the control loop to enable autonomous corrective actions, specifically for mechanical tension regulation y conveyor belts. This research addresses this limitation by designing, implementing, and validating a low-cost, small-scale prototype capable of soft real-time energy monitoring, anomaly detection, and automatic physical correction. The system utilizes an ESP32 microcontroller and an INA219 sensor to analyze voltage and current signals, employing unsupervised machine learning algorithms such as Isolation Forest (IF) and One-Class Support Vector Machine (OC-SVM). This serves to diagnose tension states defined by specific deflection thresholds. To execute the physical corrections, the platform integrates a custom built rack and pinion mechanism driven by a servomotor, which automatically regulates the belt tension. Methodologically, the study characterized optimal operational conditions at a 30% PWM duty cycle and applied a median filter that reduced signal variability. Four models were trained using exclusively optimal-state data under univariate and multivariate configurations. Experimental results demonstrate that electrical parameters serve as reliable indicators of mechanical tension in a small scale conveyor belt. The Univariate One-Class SVM model applied to voltage yielded the highest performance, achieving an F1-Score of 0.8624. Meanwhile, the Multivariate OC-SVM model demonstrated high reliability with a Precision of 90.51% and a Recall of 72.95%. Upon detection of anomalies (slippage or excessive tightness), the system successfully triggered autonomous adjustments via a rack and pinion mechanism. These findings validate the feasibility of using accessible monitoring to implement intelligent, self-correcting maintenance systems, offering a scalable solution to minimize downtime and energy waste in industrial environments.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia