Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de maestría / master thesis
    Unsupervised learning to profile emerging researchers in LATAM with Elsevier’s data
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-05) Figueroa Castillo, Jesús Manuel; Hernández Gress, Neil; mtyahinojosa, emimmayorquin; Ceballos Cancino, Héctor Gibrán; Estévez Bretón, Carlos Manuel; School of Engineering and Sciences; Campus Monterrey; Hervert Escobar, Laura
    This proposal is being presented in Computer Science. High-impact researchers possess several key features based on their expertise; never theless, it takes time to establish themselves as leaders in their area. The objective of this research is to develop a model that can identify those outstanding researchers by discipline using indicators from the last five years of research and acknowledged databases such as Sco pus and Web of Science. Additionally, it will compare similarities across various disciplines to determine whether it is possible to predict researchers from one or more disciplines using the same model. The main objective of this research is to discover the characteristics that define a ”rising star” based on the concept of an early career researcher as a initial time window. It is important to mention that current metrics measure researchers’ performance through indicators known as H-index and its variants. However, these metrics often do not consider characteristics that differentiate one group from another. Through this unsupervised approach, we aim to f ind different groups that exist in LATAM to measure their characteristics more precisely and fairly, and to identify those high-impact researchers who may not be immediately apparent through indicators like the H-index. This thesis will demonstrate the process from data mining to the statistical analysis of the different groups.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia