Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de maestría
    Attention YOLACT++: achieving robust and real-time medical instrument segmentation in endoscopic procedures.
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-04) Ángeles Cerón, Juan Carlos; Chang Fernández, Leonardo; 345979; Chang Fernández, Leonardo; emipsanchez; González Mendoza, Miguel; Alí, Sharib; Escuela de Ingeniería y Ciencias; Campus Monterrey; Ochoa Ruiz, Gilberto
    Image-based tracking of laparoscopic instruments via instance segmentation plays a fundamental role in computer and robotic-assisted surgeries by aiding surgical navigation and increasing patient safety. Despite its crucial role in minimally invasive surgeries, accurate tracking of surgical instruments is a challenging task to achieve because of two main reasons 1) complex surgical environment, and 2) lack of model designs with both high accuracy and speed. Previous attempts in the field have prioritized robust performance over real-time speed rendering them unfeasible for live clinical applications. In this thesis, we propose the use of attention mechanisms to significantly improve the recognition capabilities of YOLACT++, a lightweight single-stage instance segmentation architecture, which we target at medical instrument segmentation. To further improve the performance of the model, we also investigated the use of custom data augmentation, and anchor optimization via a differential evolution search algorithm. Furthermore, we investigate the effect of multi-scale feature aggregation strategies in the architecture. We perform ablation studies with Convolutional Block Attention and Criss-cross Attention modules at different stages in the network to determine an optimal configuration. Our proposed model CBAM-Full + Aug + Anch drastically outperforms the previous state-of-the art in commonly used robustness metrics in medical segmentation, achieving 0.435 MI_DSC and 0.471 MI_NSD while running at 69 fps, which is more than 12 points more robust in both metrics and 14 times faster than the previous best model. To our knowledge, this is the first work that explicitly focuses on both real-time performance and improved robustness.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia