Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Biofabrication of anisotropic constructs using extrusive chaotic printing(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2023-12-01) Hernandez Medina, David Hyram; Trujillo de Santiago, Grissel; mtyahinojosa, emipsanchez; Bolívar Monsalve, Edna Johana; Castillo, Jimmy; Esquivel Alfaro, Marianelly; Escuela de Ingeniería y Ciencias; Campus Monterrey; Álvarez, Mario MoisésAligned tissue constitutes a considerable percentage of the body mass, and it is this anisotropic characteristic which confers certain mechanical and functional properties to the tissue. For creating tissue-like structures that resembles the body, one relevant challenge lies on using biomaterials and shaping them to create aligned structures. These constructs serve as scaffolding materials that promote cell proliferation and differentiation that can eventually become a working tissue. In this study, continuous chaotic printing was used to fabricate highly oriented printed scaffolds and bioprinted cell-laden constructs. First, we assessed the effectiveness of a chaotic extrusion printhead, containing a Kenics Static Mixer (KSM), as a tool to align fibrillar inks. In short, soft fibrillar materials (i.e., alginate-cellulose and collagen) were chaotically printed into 1 mm thick filaments and scaffold anisotropy was assessed in terms of printed microstructures orientation. Filaments showed orientation up to 68% in a -15° to 15° region where the main axis (i.e., aligned fiber) correspond to 0°. Moreover, we assessed the capability of chaotic bioprinting to produce aligned and pre-vascularized skeletal-muscle-like tissues. Briefly, fibers were bioprinted using three inks: a hydrogel loaded with myoblasts (C2C12 cells), a non-crosslinkable hydrogel to create inner vessels inside the fiber, and a high viscosity hydrogel loaded with mesoporous bioactive glass (MBG) to provide mechanical robustness to the fiber. A comparison was made between homogeneous (pre mixed) fibers and pre-vascularized fibers with a layered inner structure. The constructs were cultured up to 21 days and demonstrated high viability (>85%) and a significant relation in the orientation trend of the F-actin filaments with the stratification. Overall, we demonstrated that chaotic printing is a practical tool for fabricating anisotropic constructs with both, fibrillar inks and cell-laden constructs.
- Fabrication of highly perfusable gelatin-methacryloyl (GelMA) constructs using flow-based strategies(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-06-05) Pedroza González, Sara Cristina; TRUJILLO DE SANTIAGO, GRISSEL; 256730; Trujillo de Santiago, Grissel; RR, emipsanchez; González Gamboa, Ivonne; Mertgen, Anne-Sophie; De Santiago Miramontes, Ma. de los Ángeles; Escuela de Ingeniería y Ciencias; Campus Monterrey; Álvarez, Mario MoisésOne of the most important challenges when engineering tissues in vitro is the creation of viable thick constructs. The diffusion of gas and nutrients severely limits the size of engineered constructs. Therefore, the incorporation of perfusable lumen structures within thick engineered tissues is needed for enabling gas exchange, perfusion of nutrients, and waste removal down to the depth of the tissue. Current biofabrication techniques used to create perfusable networks in thick 3D constructs are limited in resolution and control, and they require sophisticated or expensive tools. In this work, we propose a simple technique to develop perfusable hydrogel constructs based on the use of a 3D flow-based biofabrication technique, namely the mini Journal Bearing (mJB), and by employing sacrificial inks. Through the action of regular flows induced in a mJB and the flow-advection of two different hydrogels, we created constructs with an internal sacrificial structure. We used gelatin methacryloyl (GelMA) as a permanent hydrogel matrix, and a drop (100 µL) of gelatin as a fugitive ink/bioink. Here we present a thorough characterization of the microarchitecture and porosity of these constructs. Especially, we demonstrated how permeability increased within these constructs. Additionally, aiming to mimic the architectural complexity of natural tissues, we added nanotopographical cues to our constructs by the incorporation of elongated flexuous plant viruses, namely Turnip Mosaic Virus (TuMV). We conducted our in vitro experiments using myoblasts cells as a biological model and characterized their biological response through time. We fabricated three different types of cell-laden-constructs: GelMA with suspended cells, GelMA with a gelatin ink loaded with cells, and GelMA with a gelatin ink loaded with cells and TuMV. Cells were able to grow faster and for longer in GelMA/gelatin constructs than in pristine-GelMA constructs. While an intricate network of cells was developed after 28 days of culture within permeabilized GelMA/gelatin constructs, only surface proliferation was observed in dense constructs made exclusively with GelMA. The use of GelMA/gelatin-TuMV had an evident morphological effect on cell attachment and proliferation. TuMV 3D meshes providing additional scaffolding within the lumina. While myoblast alignment was strongly evident in GelMA/gelatin where cells adhered mainly to the lamellae walls, in GelMA/gelatin-TuMV constructs, cells alignment was attenuated by interaction with the 3D micromesh of TuMV.
- Biofabrication of nanoenhanced hydrogel fibers for muscle tissue engineering using surface chaotic flows: Chaotic 2D-printing(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020) Frías Sánchez, Ada Itzel; TRUJILLO DE SANTIAGO, GRISSEL; 256730; FRIAS SANCHEZ, ADA ITZEL; 887018; ALVAREZ, MARIO MOISES; 26048; Trujillo de Santiago, Grissel; RR; Tamayol, Ali; Ponz Ascaso, Fernando; Samandari, Mohamadmahdi; School of Engineering and Sciences; Campus Monterrey; Alvarez, Mario MoisésMultiple human tissues exhibit a fibrous nature. Therefore, the fabrication of hydrogel filaments for biomedical engineering applications is a trending topic. Current tissue models are made of materials that often require further enhancement for appropriate cell attachment, proliferation and differentiation. Here we present a simple strategy, based on the use of mathematically modelable surface chaotic flows, to fabricate continuous, long and thin filaments of gelatin methacryloyl (GelMA) added with Turnip mosaic virus (TuMV) for enhanced muscle tissue engineering. The fabrication of these filaments was achieved by chaotic advection in a finely controlled and miniaturized version of the journal bearing (JB) system. A drop of a pre-gel solution of GelMA was injected on a higher-density viscous fluid (glycerin) and a chaotic flow was applied through an iterative process. The hydrogel drop exponentially deformed and elongated to generate a fiber, which was then photocrosslinked under exposure to UV light. Computational fluid dynamics (CFD) simulations were conducted for the design and prediction of our results. GelMA fibers were then used as scaffolds for C2C12 myoblast cells, and the effect of adding plant-based viral nanoparticles (VNP) to the hydrogel fibers as nano-scaffolds for cellular growth was evaluated. Chaotic 2D-printing was proven to be a viable method for the fabrication of hydrogel fibers. CFD simulations accurately predicted the lengths of the printed fibers, and a correlation coefficient of R2=0.9289 was determined from the experimental and simulated data of the first two cycles. The hydrogel fibers were effective scaffolds for muscle cells and show potential to be used as cost-effective models for muscle tissue engineering purposes. TuMV significantly increased the metabolic activity of the cell-seeded fibers (p<0.05), strengthened cell attachment throughout the first 28 days, improved cell alignment to ~50%, and promoted the generation of structures that resemble natural mammal muscle tissue.

