Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Development of polyethylene fibers using extrusion for the projection of its implementation on textiles(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-12) Martínez Hernández, Saúl; Treviño Quintanilla, Cecilia Daniela; emimmayorquin; Lozano Sánchez, Luis Marcelo; Franco Urquiza, Edgar; Martínez Franco, Enrique; Burelo Torres, José Manuel; School of Engineering and Sciences; Campus Querétaro; Treviño Quintanilla, Cecilia DanielaThe global textile industry faces significant challenges due to unsustainable practices, including extensive resource consumption and substantial waste generation. This thesis investigates the development of polyethylene (PE) fibers using extrusion techniques to address the demand for durable, lightweight, and sustainable fibers. The choice of PE is driven by its favorable optical properties, availability, and compatibility with textile production requirements. This research optimized extrusion parameters—screw speed, heating zone temperature, cooling rate, and collection speed—to produce fibers with a target diameter of 15 μm, achieving final diameters of up to 8 μm. A coextrusion approach was utilized, creating core-shell fibers with PE as the core and polylactic acid (PLA) as the shell, enabling precise diameter control. The PLA shell was removed through chloroform dissolution. Fibers with and without the shell were characterized using differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) to evaluate their composition and structural integrity. The fibers were woven into textiles using a table loom, tested for wicking properties, and compared against existing textile alternatives. SEM analysis provided detailed structural insights into the woven samples. Results demonstrate the potential of these fibers as a sustainable alternative to conventional textiles, with promising performance in wicking tests. Further optimization and exploration of production methods are necessary to enhance their viability for industrial applications.
- Caracterización mecánica de un material compuesto base ONYX® reforzado con fibras para aplicaciones aeronáuticas(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-06-07) Abarca Vidal, César Gustavo; TREVIÑO QUINTANILLA, CECILIA DANIELA; 297081; Treviño Quintanilla, Cecilia Daniela; puemcuervo; Peñalva Soto, Jorge; Sánchez Santana, Ulises; Cuan Urquizo, Enrique; Escuela de Ingeniería y Ciencias; Campus Monterrey; Uribe Lam, EsmeraldaEl alto consumo de combustible de las aeronaves dentro de la industria aeronáutica ha llevado a la búsqueda de soluciones alternativas, siendo la reducción de peso una alternativa al problema. El uso de materiales compuestos se ha utilizado dentro de la industria aeronáutica en prototipos de aviones Airbus donde se utilizan compuestos termoplásticos y presentan hasta un 20% de reducción de peso respecto a otras aeronaves. Dentro de los procesos de fabricación tradicionales que se caracterizan por la capacidad de controlar el proceso, los nuevos procesos de fabricación como la manufactura aditiva (MA), permiten la fabricación de estructuras complejas, reducen el tiempo de procesamiento en comparación con los métodos tradicionales, la capacidad de reproducibilidad, así como la reducción en el costo de la producción a pequeña escala. El objetivo de la investigación es la fabricación de materiales compuestos mediante manufactura aditiva definiendo la geometría y cantidad de relleno, orientación de las fibras de refuerzo, así como los materiales de refuerzo a utilizar para el material compuesto base ONYX® proponiendo dicho material como alternativa de material de reemplazo por el aluminio. Para lograr el objetivo, ONYX® se definió como un material matriz. Por otro lado, se definió el uso de fibra de carbono y fibra de Kevlar® como materiales de refuerzo. Para determinar las propiedades mecánicas del material se realizaron ensayos de tensión, compresión y flexión. En cuanto a los resultados, se observó una disminución de la densidad en un 36.19% en el material compuesto respecto al aluminio 7075 O y 7075-T6. Por otra parte, se observaron incrementos en la relación densidad-resistencia desde un 48% hasta un 233% respecto al aluminio 7075 O siendo el material compuesto propuesta una posible alternativa de material de reemplazo para la industria aeronáutica.
- A study of variation in the cross-sectional areas of thermoplastic filaments on lattice structures manufactured by fused filament fabrication(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-12-02) Moreno Núñez, Benjamín Alberto; ; Treviño Quintanilla, Cecilia Daniela; puemcuervo/tolmquevedo; Cuan Urquizo, Enrique; Espinoza García, Juan Carlos; Uribe Lam, Esmeralda; School of Engineering and Sciences; Campus MonterreyThis research was focused on developing a method to control the width of extruded filaments, to have a controlled structure of the infills of 3D printed products manufactured by Fused Filament Fabrication (FFF). Different parameters and their effect on the width of extruded filaments in FFF were studied. The materials used were three thermoplastic filaments: polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and polycarbonate (PC). The extruded filament widths were measured using optical characterization and analyzed using statistical analysis. Two different approaches were followed. First, an experimental one, in which the effect of the extrusion temperature, the feed rate, the layer height, the fan power, and the bed temperature on the width was studied. A factorial design of experiments was performed using the previously mentioned parameters, in which different combinations were made to obtain the experimental data and perform a regression analysis that explains and predicts the width of the filaments after extrusion. A second approach was done to obtain an empirical model that predicts the die-swell of the filament when it is extruded. To obtain this model, two different mathematical models were selected from the literature. The first model explains the pressure inside a nozzle, considering the rheological properties and parameters of the FFF process. The second model predicts filament die-swell after extrusion, considering extrusion pressure, extrusion temperature, printing speed, and nozzle diameter. In the end, an empirical model was done by adapting the pressure model to the die-swell model and it was possible to obtain the values that could give a controlled thickening considering the extrusion temperature and adjusting the printing speed.