Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 3 of 3
  • Tesis de maestría
    Environmental impact of conventional manufacturing and additive manufacturing in lifecycle of turbine blade
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-16) Torres Carrillo, Sharon Andrea; Rodríguez González, Ciro Ángel; Siller Carrillo, Héctor Rafael; Vila Pastor, Carlos; Vega, Yadira
    The exponential growth of additive manufacturing technologies is not only improving production processes to achieve functional requirements for products, but it could also help to minimize environmental impacts. In order to align a green product lifecycle management vision, companies need to implement emerging technologies and define a set of metrics that measure the benefits of the change. Each product requires a particular and optimized manufacturing process plan, and each production phase must achieve a significant reduction of critical metrics for the whole Life Cycle Assessment (LCA). This study provides a comprehensive and comparative LCA of two manufacturing process plans for the case study of an aircraft engine turbine blade. The first process consists of a combination of Investment Casting and Precision Machining and the second consists in the replacement of Investment casting by Selective Laser Melting as an emergent process for near net shape fabrication. The collected data for the comparison includes Global Warming Potential (GWP), Acidification Potential (AP), Ozone layer Depletion Potential (ODP), Human Toxicity Potential (HTP), Ecotoxicity and Abiotic Depletion Potential (ADP).
  • Tesis de maestría
    Road load data acquisition system with SAE-J1939 communications network: integration and laboratory test
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-14) Orellana Cruz, Oscar; Rodríguez González, Ciro Ángel; Siller Carrillo, Héctor Rafael; Martínez Romero, Oscar; Guedea Elizalde, Federico
    This thesis discloses the results of a reliability analysis (R&R Study) through comparative method to validate a data acquisition (DAQ) system developed and built as a prototype. The laboratory conditions were established in order to test and validate the prototype when it acquires signals from accelerometers and strain gages as well as parameters taken from the electronic control unit (ECU), in this case a truck. The prototype equipment is composed of 9030 Compact RIO system with NI 9862 module for Controller Area Network (CAN) SAE J1939 and NI 9206 for analog inputs. 800 Hz sampling rate is programmed with LabVIEW code to acquire, store and analyze information. For the truck parameters, the code developed by Armando Ramírez in his research [6] was replicated and integrated into the code developed for the acquisition of signals with a user-friendly and versatile interface. The parameters are accelerator pedal position, engine speed, engine coolant temperature and wheel-based vehicle speed, with these parameters is possible to analyze the driving mode during the road tests. Instrumentation for acceleration was developed on a shaker to acquire the data, the frequency and wave amplitude were controlled by the use of a signal generator and signal amplifier. The reference data is acquired by a Brüel & Kjaer (B&K) module model 3160-A pattern equipment with PULSE Time Data Recorder software. Instrumentation for strain measurements was developed by simulating the strain gage measurement using a variable precision resistor. The reference data is acquired by a B & K module model 3160-A pattern equipment with PULSE Time Data Recorder software and two multimeters: OTC 55 series and MUL-280. The analysis range for these measurements is 0 to 80 Hz. The selected equipment demonstrated the DAQ system capability to perform vibration and deformation measurements with a resolution of 0.1 g and 100 μɛ respectively in the frequency range from 0 to 80 Hz, as well as obtain parameters from CAN J1939 protocol at the same time.
  • Tesis de maestría
    Convergence of Industry 4.0 and Regenerative Engineering to boost development of scaffolds created by hybrid additive manufacturing
    (2017-12-05) Camargo Camrgo, Belinda; Rodríguez González, Ciro Ángel; Romero Díaz, David Carlos
    Industry 4.0 and its underlying technologies, such as Internet of Things (IoT) and Cyber-Physical Systems (CPS), are usually portrayed as a way to enable communication in a workshop between the machinery and an intelligent control system, handle consumer demand for customized products, achieve a near-zero defect manufacturing process, and handle materials, energy consumption, and waste more efficiently, amongst others. Case studies on how the automotive, electronics, or aerospace industry benefit from Industry 4.0 implementation are readily available and surely, there are more to come. By contrast, scaffolds of Regenerative Engineering, are still in Research and Development and yet to be approved as a commercial regenerative procedure. A thorough analysis of the requirements was developed and the product manufacturing phases were modeled using Unified Modeling Language (UML). Business, structure, activity, class, and sequence diagrams, amongst others, are modeled using this standard and an ontology that converges Industry 4.0 technologies applied on Regenerative Engineering is established under the Ontology Web Language Description Logic (OWL-Dl). An architecture to augment a scaffold manufacturing cell with Industry 4.0 technologies is proposed. By using smart sensors, actuators, and the information they generate, a database with material and process variables is populated. This database can then be analyzed by smart algorithms to find the most effective parameters to manufacture a successful scaffold for tissue regeneration. Initial testing shows the feasibility of the proposed architecture and its ability to store relevant information of the produc
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia