Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de maestría
    Use of reinforcement learning to help players improve their skills in Super Smash Bros. Melee
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-11-22) Estrada Valles, Jorge Alberto; Ramírez Uresti, Jorge Adolfo; puelquio/tolmquevedo; Morales Manzanares, Eduardo; Sosa Hernández, Víctor Adrián; Medina Pérez, Miguel Ángel; Ingenieria y Ciencias; Campus Monterrey
    eSports have become a huge industry in recent years which has led to more and more people being interested in competing as professional players, however not all players have the same opportunities as things like the current residence of the player are a huge factor. This is especially true for fighting games as people who live in small cities or countries usually have the problem of finding people with whom to practice and even then it may not be the best practice, so people opt to play against in-game AI which is also not good practice. Due to this problem new and more accessible ways for players to train must be created which is why a reinforcement learning solution is proposed. In this thesis, we present a solution using Proximal Policy Optimization to help people train when their best option is against the in-game AI. Furthermore, several additions, namely multiple time step actions, reward shaping, and specialized training; are suggested to optimize the created model to be used as a training partner by a human. To evaluate the effectiveness of the resulting model the game named Super Smash Bros. Melee was used to compare the improvement achieved by training against our bot and against the in-game AI. The results show that people that trained against the bot improved more than the people that trained against the AI, proving that it is a good way to help players train for eSport competitions.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia