Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Deep learning for clothing classification, case study:thermal comfort(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-11-23) Medina Rosales, Adán; Ponce Cruz, Pedro; puemcuervo; López Caudana, Edgar Omar; Rojas Hernández, Mario; Soriano Avendaño, Luis Arturo; School of Engineering and Sciences; Campus Ciudad de México; Molina Gutiérrez, ArturoImage classification algorithm has being in quick development over the last 10 years with a new algorithm appearing every year, this new algorithms aim to be faster and more accurate than its predecessors, so real time implementations for object classifiers are more frequent. However the solutions for problems are going to more complex problems leaving things such as clothing ensemble classification on the side. There are some proposed solutions on the recognition of clothing garments but all aim to a specific solution in the fashion industry for customer categorization or shopping proposals, however a more general approach which recognizes multiple clothing garments is missing, and a real time clothing ensemble detection could be implemented in several problems. One of such problems is the case study for this project were a CNN implementation is used in video testing to propose the solution for clothing insulation determination using the real time clothing ensemble detector and therefore have a more accurate thermal comfort value. The results proved that the implementation of the chosen CNN architecture could be used as a clothing ensemble detector in a real time implementation, however since a minimized version of the needed dataset was used to verify the viability of this proposal a more complete dataset needs to be created in order to improve the models performance. In general this proposal shows the comparison between come CNN architectures and the datasets available for the propose objectives, as well as the creation of a new dataset that can be successfully used to train the chosen CNN model and produce a real time clothing ensemble detector.