Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Production of spray-dried chickpea instant powders from a proteolytic-amylolytic hydrolysate(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-06-14) Domínguez Chávez, Alison Nelisa; PEREZ CARRILLO, ESTHER; 97996; Pérez Carrillo, Esther; puelquio/mscuervo; Welti Chanes, Jorge Santos; Antunes Ricardo, Marilena; Garcia Amezquita, Luis Eduardo; Escuela de Ingeniería y Ciencias; Campus Monterrey; Serna Saldívar, Sergion Román OthónCurrent research for alternatives for milk and dairy products, leads the food industry to the application of various processing technologies for raw materials such as legumes with the objective of transforming them into vegetable protein beverages. These products should offer benefits for different types of consumers especially those who adopted nutritional habits such as vegetarianism, veganism or want to avoid allergies. One of the legumes that has been studied for the development of vegetable alternatives to milk is chickpea, which its transformation implies the use of various processing technologies such as thermal and enzyme treatments. From earlier studies it has been found that the combination of thermal extrusion and enzyme hydrolysis of whole chickpea flour with Alcalase and thermoresistant alpha amylase, yield a liquid chickpea hydrolysate rich in protein (20%) and hydrolyzed starch (48%). This liquid chickpea hydrolysate is a promising source for producing an alternative for a novel vegetable milk analog. The withdraw of this alternative is that the beverage requires refrigeration or the employment of aseptic packaging for conserving its properties in order to avoid reduction on its quality and microbial contamination. Drying technologies can overcome this condition by producing powders with a longer shelf life. Therefore, in this research, spray drying technology was used to produce chickpea hydrolysate powders with a prolonged shelf life at room temperature. Since chickpea hydrolysates present 48% of hydrolyzed starch, this may produce operational problems during spray-drying process due to the accumulation of material in the drying chamber. Therefore, inulin and maltodextrin were used as carrier agents with the aim of improving spray-drying processing. These ingredients were evaluated in order to optimize process yield and improved functional properties of chickpea hydrolysate powders for instant beverage preparation. Spray drying conditions were evaluated at 70 and 60°C as outlet temperatures with 180°C inlet air temperature whereas the carrier agents were used in concentrations of 1.5% or 3.0% w/v. Both temperature conditions and type and concentration of carriers were modeled for producing sorption isotherms at 25, 35 and 45°C through Guggenheim-Anderson-de Boer (GAB) and Brunauer-Emmet-Teller (BET). Furthermore, whole, and extruded chickpea flour, freeze-dried and spray-dried hydrolysate powder without carriers were analyzed to evaluate changes in total phenolic contents due to processing. The thermoplastic extrusion of chickpea meal reduced the concentration of phenolic compounds, while hydrolysis increased it. The spray dried products presented statistical differences of total phenolics content in comparison with freeze-dried products due to temperature conditions in spray drying process. Additionally, the assessment of the yield, solubility, and moisture were performed in each powder sample Moisture sorption isotherms analysis revealed that the formulations produced with 1.5% maltodextrin with inlet air temperature of 180°C and outlet air temperature of 70°C, and 3.0% inulin with inlet air temperature of 180°C and outlet air temperature of 60°C yielded the most stable powders in terms of hygroscopicity and certain phase transitions.
- Development and characterization of a high hydrosoluble food ingredient using extruded whole chickpea flour and sequential alcalase® and α-amylase treatment(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020) Silvestre de León, Robinzon; PEREZ CARRILLO, ESTHER; 97996; HEREDIA OLEA, ERICK; 334243; Serna Saldivar, Sergio Román Othón; 3598; Pérez Carrillo, Esther; RR; Heredia Olea, Erick; Serna Saldivar, Sergio Román Othón; Escuela de Ingeniería y Ciencias; Campus Monterrey; Espinosa Ramirez, Johanan del PinoChickpea is an adequate source of proteins and starch which can be used to develop new nutritious and functional food products such as vegetable beverages. However, in order to use chickpea to develop a functional, healthy and nutritional beverage, its processing is needed to improve the digestibility and increase the quantity of soluble components into an aqueous system. Therefore, in the present research work, extrusion of whole chickpea and sequential hydrolyses with Alcalase® and α-amylase were evaluated to develop a high soluble chickpea-based food ingredient. The thermoplastic extrusion process was carried out varying processing moisture (15.6% or 22.55%), final barrel temperature (143 °C or 150 °C) and screw speed (450 rpm, 580 rpm, or 700 rpm) to generate three SME inputs (127.95 Wh/kg, 161.58 Wh/kg, and 199.13 Wh/kg). After extrusion, flours were hydrolyzed with Alcalase® and α-amylase in order to maximize soluble compounds after hydration. In general, extrusion did not affect chemical composition, but caused structural modifications that influenced changes in functional properties and modified in vitro protein and starch digestibilities. Extruded chickpea flours presented higher content of soluble proteins and increased starch hydrolysis after Alcalase® and α-amylase treatment, respectively. It was found that extrusion treatment of chickpea with a SME input of 127.95 Wh/kg produced at 22.5% processing moisture, 150 °C of final temperature and 580 rpm of screw speed in combination with the later Alcalase®/α-amylase treatments achieved the highest release of both soluble proteins (70%) and soluble solids (62%) and the highest degree of starch hydrolysis (84%). These results were used to transform whole chickpea flour into a valuable soluble food ingredient by means of a combination of extrusion and sequential Alcalase®/α-amylase treatment. This soluble food ingredient was freeze dried, milled and characterized in terms of chemical composition and protein quality. It was found that the resulting powder had 53.7%, 20.2% and 3.6% of reducing sugars, proteins, and fat contents, respectively. The soluble powder had an in vitro protein digestibility of 83.1%, a PDCAAS value of 0.831 and it did not present any limiting amino acids which suggest that this product had the potential to be used to develop instant chickpea beverages with an excellent nutrimental quality.