Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 2 of 2
  • Tesis de maestría
    Synthesis and obtention of CaSiO3 and WO3 ceramic particles as reinforcing fillers of Poly(vinyl alcohol)/Gelatin hydrogels for cartilage regeneration
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-06-01) Catzim Ríos, Kevin Stalin; ORTEGA LARA, WENDY DE LOURDES; 95211; Ortega Lara, Wendy de Lourdes; puelquio, emipsanchez; Melo Máximo, Dulce Viridiana; López Mena, Edgar René; Soria Hernández, Cintya Geovanna; School of Engineering and Sciences; Campus Monterrey; Soria Hernández, Cintya Geovanna
    Cartilage wear is a problem that affects a large percentage of the population and has gained relevance in recent years. However, current treatments do not present optimal results that favor the quality of life of those affected. Research in this field has recently focused on the development of systems that promote tissue regeneration instead of replacing it. In this work, the synthesis of CaSiO3 and WO3 ceramic nanoparticles was studied using chemical methods such as sol-gel and precipitation respectively, to later be used as reinforcement of hydrogels composed of poly(vinyl-alcohol)/Gelatin (PVA/Gel) for the improvement of hydrogel bioactivity within biological systems. For the CaSiO3 synthesis, a single pure crystalline phase was obtained, with average particle sizes between 40 and 150 nm. On the other hand, for the WO3 particles, average sizes of 130 nm were obtained. Both independent nanoparticle syntheses were characterized by XRD, SEM, FTIR, DLS and EDX. Viability assays revealed that the hydrogel formulation lowers cell viability by at least 50% in fibroblasts (NIH) and osteoblasts (HFOB). However, silicon-rich particles were found to help improve viability, promoting cell proliferation. Finally, a new non-commercial printing system was developed for freeze-thaw crosslinked hydrogels, where the possibility of 3D printing the generated PVA/Gel formulation was verified.
  • Tesis de maestría
    Technological development of Alginate/Gelatin composite hydrogel fabricated by microextrusion based printing for tissue regeneration
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2018-05-14) Urruela Barrios, Rodrigo Alejandro; Ortega Lara, Wendy de Lourdes; Alvarez Guerra, Alejandro; Vázquez Lepe, Elisa Vrginia; García López, Erika
    Alginate hydrogels have shown an enormous potential for tissue engineering due to its non-toxicity, biocompatibility, and structural similarity to extracellular matrices. To produce these hydrogels, different manufacturing techniques can be used, including microextrusion 3D printing. Current efforts for hydrogels in tissue engineering are centered on improving bioactivity and mechanical properties by the incorporation of a second biopolymer or bioceramics; and loading these materials with pharmaceutical drugs to promote a better healing process. In this work, the study of the synthesis process of alginate/gelatin hydrogels reinforced with TiO2 and beta-tricalcium phosphate (beta-TCP) and loaded with ibuprofen, its extrusion in a modified 3D Printer, and its material characterization were proposed. The hydrogel systems were successfully micro-extruded by tuning the concentration of the pre-crosslinking agent up to 0.20 w/v% and a rheological profile was obtained. FT-IR, XRD, and TGA were used to perform a physicochemical characterization and prove the growth of ibuprofen crystals inside the porous material. For the drug loading, stable microemulsions were obtained with polyvinyl alcohol (PVA) as emulsifier and various solvents, including dichloromethane. The pores of the crosslinked printed structures were measured using SEM and resulted in an average pore size from 160 μm to 40 μm, depending on the material composition, all with adequate porosity for tissue engineering. Furthermore, the hydrogels reinforced with TiO2 and beta-TCP showed enhanced mechanical properties up to 65 MPa of elastic modulus. Controllable drug loading was achieved up to 35 w/w% of the dry hydrogel with more than 50% of the loaded ibuprofen dissolving in less than one hour. Additionally, while the hydrogel was microextruded in the 3D printer, it was found that as more layers of the design were deposited in the built platform, there was an increase of the line width of the bottom layers due to its viscous deformation. Shrinkage of the design when the hydrogel is crosslinked and later freeze-dried was also measured and found to be up to 27% from the printed design. Overall, the approach taken enables to synthesize a printable composite alginate solution, loaded with an API, with adequate physical properties for tissue regeneration.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia