Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de maestría
    Visualization and machine learning techniques to support web traffic analysis
    (Instituto Tecnológico y de Estudios Superiores de Monterrey) Gómez-Herrera, Fernando; Monroy, Raúl; Campus Estado de México; Campus Estado de México; Campus Estado de México; Monroy, Raúl
    Web Analytics (WA) services are one of the main tools that marketing experts use to measure the success of an online business. Thus, it is extremely important to have tools that support WA analysis. Nevertheless, we observed that there has not been much change in how services display traffic reports. Regarding the trustworthiness of the information, Web Analytics Services (WAS) are facing the problem that more than half of Internet traffic is Non-Human Traffic (NHT). Misleading online reports and marketing budget could be wasted because of that. Some research has been done, yet, most of the work involves intrusive methods and do not take advantage of information provided by current WAS. In the present work, we provide tools that can help the marketing expert to get better reports, to have useful visualizations, and to ensure the trustworthiness of the traffic. First, we propose a new Visualization Tool. It helps to show the website performance in terms of a preferred metric and enable us to identify potential online strategies upon that. Second, we use Machine Learning Binary Classification (BC) and One-Class Classification (OCC) to get more reliable information by identifying NHT and abnormal traffic. Then, marketing analysts could contrast NHT against their current reports. Third, we show how Pattern Extraction algorithms (like PBC4cip's miner) could help to conduct traffic analysis (once visitor segmentation is done), and to propose new strategies that may improve the online business. Later on, the patterns can be used in the Visualization Tool to analyze the traffic in detail. We confirmed the usefulness of the Visualization Tool by using it to analyze bot traffic we generated. NHT traffic shared a very similar linear navigation path, contrasted with the more complex human path. Furthermore, BC and OCC (BaggingTPMiner) worked successfully in the detection of well-known bots and abnormal traffic. We achieved a ROC AUC of 0.844 and 0.982 for each approach, respectively.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia