Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Evaluation of the reprocessability of polypropylene by the implementation of Ultrasonic Micro Injection Molding(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2020-06) Gaxiola Cockburn, Rafael; GAXIOLA COCKBURN, RAFAEL; 813724; Martínez Romero, Oscar; ilquio, emipsanchez; Olvera Trejo, Daniel; Soria Hernández, Cintya Geovanna; Escuela de Ingeniería y Ciencias; Campus Monterrey; Elías Zúñiga, AlexPolypropylene (PP) is one of the most consumed commodity thermoplastics worldwide, thereby, it is critical to propose new alternatives for the recycling of its post-industrial and post-consumer waste streams. This research evaluated methodically the use of the novel Ultrasonic Micro Injection Molding (UMIM) technology, to identify the changes in morphological, mechanical, thermal and rheological properties, after the reprocessing of pure regrind material for several consecutive cycles. Proper process parameters were obtained by a Design of Experiments, achieving a reduction of micro defects, in addition to thermal stability and an enhancement of the mechanical properties of recycled PP (increase of 36% Young’s modulus, 20% yield stress, 13% ultimate stress, 26% strain, 48% toughness). The tests showed that PP was able to withstand up to five reprocessing cycles until presenting the first signs of mechanical performance downgrading. A better understanding of the mechanochemical effects and degradation is provided by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FTIR) spectra and dynamic rheology. The results of this work set UMIM in a more mature stage for its incorporation to the industry, while contributing to the circular economy practice.
- Evaluation of Forged composite on 3D Carbon Fiber composites for exoskeletons(Instituto Tecnológico y de Estudios Superiores de Monterrey) Pérez Salazar, Miguel Alejandro; MARTINEZ ROMERO OSCAR; 2278430; Martínez Romero, Oscar; puelquio, emipsanchez; Elías Zuñiga, Alex; Olvera Trejo, Daniel; Ramírez Herrera, Claudia Angélica; School of Engineering and Sciences; Campus Monterrey; Jimenez Cedeño, Isaac HumbertoComposite materials have been widely used in recent years for their outstanding mechanical properties in different industries, especially aerospace and automotive. However, the use of these materials has impacted the development of Exoskeletons to increase physical performance to complete specific tasks or movements in the human body. Exoskeletons have been developed using aluminum and different alloys, but it has been migrated to the composite material. The evolution of the composite material to 3D woven has shown good out-of-plane mechanical properties. In most cases, composites are developed by infusion processes even though compaction has proven an increase the mechanical properties. The research aims to create an infusion and compression manufacturing system to produce 3D composite materials, delivering stable and better mechanical properties for exoskeletons components. Several experiments and tests were developed to define the best manufacturing process based on the resin distribution and the mechanical properties obtained. The mechanical properties of 3D woven composites were improved using infusion and compression molding by ensuring better impregnation and distribution of the resin through the composite and increase the mechanical properties significantly for tension and flexion. Finally, it was applied in designing a component of an exoskeleton, obtaining a saving in weight and reduction of volume.