Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de maestría
    Comparing Databases for the Prediction of Student’s Academic Performance using Data Science on the Novel Educational Model Tec21 at Tecnológico de Monterrey
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-06) Lara Castor, Miguel Andrés; HERNANDEZ GRESS, NEIL; 21847; Hernández Gress, Neil; tolmquevedo, emipsanchez; Batres Prieto, Rafael; Garza Villareal, Sara Elena; Escuela de Ingeniería y Ciencias; Campus Monterrey; Ceballos Cancino, Héctor Gibrán
    Many studies have been made on the prediction of student's academic performance using Data Science. The students with poor academic performance as well as dropout students make a huge impact on the graduation rates, reputation, and finances of an educational institution. These studies take the advantage of the digitization of the admission and academic data of the students and the increasing computational power. However, since August 2019 Tecnologico de Monterrey has been doing it using entrance tests called Initial Evaluations. Unfortunately, the Initial evaluations did not provide useful predictions for the students of the fall semester in 2019. Therefore, this study aimed to compare the Initial Evaluations and the admissions data using Data Science models to predict the student's academic performance. The admission data was composed of five databases: Initial Evaluations, Emotions, Curriculum, Admission Exam and Grades of the first semester. A similar methodology to Cross Industry Standard Process for Data Mining was used to compare the models based on admission data and the models based only Initial Evaluations. A large number of experiments were carried out combining different data of admissions, feature reduction techniques and classification models. The experiments showed that the models based on admission data predicts the student's academic performance with higher accuracy than the models based only on Initial Evaluations. Nevertheless, some variables of the Initial Evaluations were relevant to the models based on admission data. Moreover, the accuracy of the experiments was in the range of the results from the related studies. The results of this study indicates that the Initial Evaluations provide useful information for the prediction of student's academic performance in the domain of Data Science.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia