Ciencias Exactas y Ciencias de la Salud

Permanent URI for this collectionhttps://hdl.handle.net/11285/551039

Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.

Browse

Search Results

Now showing 1 - 1 of 1
  • Tesis de maestría
    Study of the mechanical behavior and cell viability on 3D-printed Ti6Al4V surfaces: porosity optimization for intervertebral spacer design
    (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2025-12) Hidalgo Ayala, Gabriela; García López, Erika; Lopez Botello, Omar Eduardo; mtyahinojosa, emipsanchez; Vázquez Lepe, Elisa Virginia; Trujillo de Santiago, Grissel; Escuela de Ingenieria y Ciencias; Campus Monterrey
    Additively manufactured porous titanium implants offer a promising strategy to reduce stress shielding and promote bone interaction in spinal fusion procedures. In this work, Ti-6Al-4V lattice structures fabricated by Electron Beam Melting (EBM) were evaluated as candidates for intervertebral spacer applications. Three pore sizes (0.8 , 0.9, and 1.0 mm) were designed and produced using an Additive Arcam SPECTRA L (GE, Gothenburg, Sweden), along with solid EBM and cast Ti-6Al-4V controls. The study combined structural, mechanical, and in vitro biological characterization to determine how pore size influences performance. Dimensional analysis using scanning electron microscopy and ImageJ confirmed good geometric fidelity between CAD models and as-built lattices, with the 0.9 mm configuration showing the smallest deviation in pore diameter and strut thickness. Under uniaxial compression (ASTM E9), increasing pore size reduced both strength and stiffness. The 0.9 mm lattice exhibited a maximum compressive stress of approximately 564 MPa and an apparent modulus of approximately 13.5 GPa, values closer to those of vertebral trabecular bone than to those of solid Ti-6Al-4V. Attempts to perform compression fatigue testing (ASTM E466) revealed limitations of standard displacement-based preload protocols for highly compliant lattices, highlighting the need for adapted fatigue methodologies. A separate rotational fatigue test on a solid EBM specimen confirmed the correct functioning of the fatigue equipment. Biological performance was assessed using C2C12 murine myoblasts cultured on Ti-6Al-4V discs representing each pore size. Fluorescence imaging (Phalloidin/DAPI) showed robust cell adhesion and organized cytoskeletal structures across all lattices, while Live/Dead assays demonstrated high viability (>97%) with no pore size dependent cytotoxicity. Integrating mechanical, structural, and cellular findings, the 0.9 mm lattice emerged as the promising design, offering favorable balance between biomechanical compatibility, structural integrity and early cell response for potential use in intervertebral spacer implants.
En caso de no especificar algo distinto, estos materiales son compartidos bajo los siguientes términos: Atribución-No comercial-No derivadas CC BY-NC-ND http://www.creativecommons.mx/#licencias
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia