Falcón Morales, Luis EduardoPérez Durán, Luis Arturo2025-06-062023-11Pérez Durán, L. A. (2023). VGG-16 para detección de COVID-19 y pulmonía en radiografías de tórax. [Tesis maestría] Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703718https://hdl.handle.net/11285/703718La principal problemática que trajo la pandemia ocasionada por el virus de SARS-CoV-2, fue la necesidad de determinar rápidamente y de manera efectiva si un paciente se encontraba infectado. Los principales métodos de detección son la prueba PCR y la prueba de antígenos, una de estas pruebas es muy segura, pero puede durar hasta 3 días en dar el resultado, mientras que la otra prueba tiene resultados en minutos, pero puede dar resultados erróneos dependiendo del tiempo en el que se hizo la prueba durante la enfermedad. La presente tesis busca explorar de manera cuantitativa que tan efectivo es un modelo de red neuronal convolucional VGG-16 para el diagnóstico de enfermedades pulmonares, siendo estas COVID-19 y neumonía, así como también el posible diagnóstico de normalidad en radiografías de tórax. Para la elaboración y entrenamiento del modelo, se utiliza una base de datos gratuita que contiene 15000 imágenes. Adicionalmente se revisan diferentes trabajos previos que tratan igualmente de la clasificación de imágenes médicas con el uso de diferentes modelos de red neuronal convolucional. Se expone cómo funciona una red neuronal artificial y una red neuronal convolucional además de revisar la estructura del VGG-16, que fue el modelo seleccionado para esta tesis. Para la elaboración del modelo, se crearon 4 variantes, donde el primer modelo clasifica de manera binaria si el paciente es sano o está infectado con COVID-19, mientras que el segundo modelo clasifica tres categorías, siendo COVID-19, normalidad o neumonía. La otra variación en los modelos es en el entrenamiento, modificando algunos parámetros y cambiando el tamaño de las imágenes que se usan para el aprendizaje, utilizando una versión de imágenes de 128 x 128 pixeles y otra de 224 x 224 pixeles. En conclusión, considerando los datos obtenidos de los 4 variaciones, los modelos entrenados con las imágenes de 128 x 128 pixeles obtienen mejores resultados en comparación con los modelos entrenados con imágenes de 224 x 224 pixeles, logrando un mayor porcentaje de predicciones correctas con las imágenes de prueba. The main problem brought by the pandemic caused by the SARS-CoV-2 virus was the need to quickly and effectively determine whether a patient was infected. The main detection methods are the PCR test and the antigen test, one of these tests is very safe, but can take up to 3 days to give the result, while the other test has results in minutes, but it can give erroneous results depending on the time in which the test was done during the illness. This thesis seeks to quantitatively explore how effective a VGG-16 convolutional neural network model is for the diagnosis of lung diseases, these being COVID-19 and pneumonia, as well as the possible diagnosis of normality in chest x-rays. For the development and training of the model, a free database containing 15000 images is used. In addition, different previous works that also have classification of medical images with the use of different convolutional neural network models are reviewed. How an artificial neural network and a convolutional neural network work are explained, in addition to reviewing the structure of the VGG-16, which was the model selected for this thesis. To develop the model, 4 variants were created, the first model classifies in a binary way whether the patient is healthy or infected with COVID-19, while the second model classifies three categories, being COVID-19, normality or pneumonia. The other variation of the models is in the training, modifying some parameters and changing the size of the images used for learning, using a version of 128 x 128 pixels and another of 224 x 224 pixels. In conclusion, considering the data obtained from the 4 variations, the models trained with the 128 x 128 pixel images obtained better results compared to the models trained with 224 x 224 pixel images, achieving a higher percentage of correct predictions using the test images.TextospaopenAccesshttp://creativecommons.org/licenses/by/4.0MEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::MEDICINA INTERNA::ENFERMEDADES PULMONARESMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::EPIDEMIOLOGÍA::VIRUSMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::CIENCIAS CLÍNICAS::RADIOLOGÍACIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::OTRAS ESPECIALIDADES MATEMÁTICASScienceMedicineVGG-16 para detección de COVID-19 y pulmonía en radiografías de tóraxTesis de Maestría / master Thesishttps://orcid.org/0009-0000-0939-418XVGG-16COVID-19Red Neuronal ConvolucionalCNNNeumonía