A methodology for prediction interval adjustment for short term load forecasting

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorBatres Prieto, Rafael
dc.contributor.authorZúñiga García, Miguel Ángel
dc.contributor.catalogerhermlugoes_MX
dc.contributor.committeememberSantamaría Bonfil, Guillermo (Co-advisor)
dc.contributor.committeememberNoguel Monroy, Juana Julieta
dc.contributor.committeememberCeballos Cancino, Héctor Gibrán
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.contributor.mentorArroyo Figueroa, Gustavo
dc.date.accessioned2022-03-01T17:28:59Z
dc.date.available2022-03-01T17:28:59Z
dc.date.created2020-12
dc.date.issued2020-12
dc.descriptionhttps://orcid.org/0000-0002-8934-5632es_MX
dc.description.abstractElectricity load forecasting is an essential tool for the effective power grid operation and for energy markets. However, the lack of accuracy on the estimation of the electricity demand may cause an excessive or insufficient supply which can produce instabilities in the power grid or cause load cuts. Hence, probabilistic load forecasting methods have become more relevant since these allow to understand, not only load point forecasts but also the uncertainty associated with it. In this thesis, a framework to generate prediction models that generate prediction intervals is proposed. This framework is designed to create a probabilistic STLF model by completing a series of tasks. First, prediction models will be generated using a prediction method and a segmented time series dataset. Next, prediction models will be used produce point forecast estimations and errors will be registered for each subset. At the same time, an association rules analysis will be performed in the same segmented time series dataset to model cycling patterns. Then, with the registered errors and the information obtained by the association rules analysis, the prediction intervals are created. Finally, the performance of the prediction intervals is measured by using specific error metrics. This methodology is tested in two datasets: Mexico and Electric Reliability Council of Texas (ERCOT). Best results for Mexico dataset are a Prediction Interval Coverage Probability (PICP) of 96.49% and Prediction Interval Normalized Average Width 12.86, and for the ERCOT dataset a PICP of 94.93% and a PINAW of 3.6. These results were measured after a reduction of 14.75% and 5.25% in the prediction intervals normalized average width of the Mexico and ERCOT dataset respectively. Reduction of the prediction interval is important because it can helps in reducing the amount of electricity purchase, and reducing the electricity purchase even in 1% represents a large amount of money. The main contributions of this work are: a framework that can convert any point forecast model in a probabilistic model, the Max Lift rule method for selection of high quality rules, and the metrics probabilistic Mean Absolute Error and Root Mean Squared Error.es_MX
dc.description.degreeDoctor of Philosophy in Engineering Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator1||12||1209||120914es_MX
dc.identifier.citationZuniga-Garcia, M. A. (2020). A methodology for prediction interval adjustment for short term load forecasting (Doctoral thesis, Instituto Tecnológico y de Estudios Superiores Monterrey).es_MX
dc.identifier.cvu243581es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-6277-244Xes_MX
dc.identifier.urihttps://hdl.handle.net/11285/645413
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationTecnologico de Monterreyes_MX
dc.relationInstituto Nacional de Electricidad y Energías Limpiases_MX
dc.relationConsejo Nacional de Ciencia y Tecnologíaes_MX
dc.relationSecretaría de Energíaes_MX
dc.relation.impreso2020-12-04
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.urlhttps://www.researchgate.net/profile/Miguel_Zuniga-Garciaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::ESTADÍSTICA::TÉCNICAS DE PREDICCIÓN ESTADÍSTICAes_MX
dc.subject.keywordEnergyes_MX
dc.subject.keywordShort-term load forecastinges_MX
dc.subject.keywordPrediction intervales_MX
dc.subject.keywordProbabilistic forecastinges_MX
dc.subject.keywordArtificial neural networkses_MX
dc.subject.keywordAssociation ruleses_MX
dc.subject.keywordMachine learninges_MX
dc.subject.lcshSciencees_MX
dc.titleA methodology for prediction interval adjustment for short term load forecastinges_MX
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
PhD_Thesis_MAZG.pdf
Size:
8.86 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
CartaAutorizacion_MAZG.pdf
Size:
14.9 KB
Format:
Adobe Portable Document Format
Description:
Carta autorización
Loading...
Thumbnail Image
Name:
Autoria_MAZG.pdf
Size:
107.66 KB
Format:
Adobe Portable Document Format
Description:
Carta autoría
Loading...
Thumbnail Image
Name:
Firmas_MAZG.pdf
Size:
295.19 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia