Robust unsupervised statistical learning for the identification and prediction of the risk profiles

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorTamez Peña, José Gerardo
dc.contributor.authorNezhadmoghadam, Fahimeh
dc.contributor.catalogerpuemcuervo, emipsanchezes_MX
dc.contributor.committeememberTreviño Alvarado, Víctor Manuel
dc.contributor.committeememberMartínez Ledesma, Juan Emmanuel
dc.contributor.committeememberSantos Díaz, Alejandro
dc.contributor.committeememberMartínez Torteya, Antonio
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorTAMEZ PEÑA, JOSE GERARDO; 67337
dc.date.accepted2022-11-15
dc.date.accessioned2023-05-22T16:30:45Z
dc.date.available2023-05-22T16:30:45Z
dc.date.issued2022-11-15
dc.descriptionhttps://orcid.org/0000-0003-1361-5162es_MX
dc.description.abstractThe discovery of disease subtypes substantially impacts the selection of patient-specific treatment with implications for long-term survival and disease-related outcomes. Given the heterogeneity of disease phenotypes and the demand for a clear understanding of the features associated with the onset of the disease, this discovery of clinically relevant disease subtypes is not straightforward. Consequently, it is essential for clinical researchers that techniques of disease subtyping be robust and reproducible in clinical settings. This dissertation aims to provide a simple clinical tool that predicts the specific disease subtype of a patient. Therefore a robust unsupervised statistical learning method is presented, developed, and validated that analyzes multidimensional datasets and returns reproducible, robust unsupervised clustering Models of the identified patient subtypes. Unsupervised clustering techniques could realistically model disease heterogeneity. Each cluster represents a distinct homogenous disease subtype discovered through the analysis of the predicted Class-Co-Association Matrix (PCCAM) created by randomly resampling research data. Primarily, there is a PCCAM resulting from the test results of replicated random-crossvalidation of unsupervised clustering that depicts the joint probability of subjects-pairs belonging to the same cluster; thus, PCCAM can result in the discovery of all the reproducible clusters present in the studied data. We applied the proposed methodology to various diseases to discover subtypes such as Alzheimer's disease, Covid-19, and acute myeloid leukemia cancer with different data types. Our findings showed the proposed unsupervised approach could discover the subtypes of disease with statistical differences. Also, the characterization of discovered subgroups indicated other substantial differences in some features we considered studying amongst subgroups.es_MX
dc.description.degreeDoctor of Philosophy In Engineering Science Major in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3314||331499es_MX
dc.identifier.citationNezhadmoghadam, F. (2022). Robust unsupervised statistical learning for the identification and prediction of the risk profiles [Tesis Doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/650703es_MX
dc.identifier.cvu1005316es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-5200-1193es_MX
dc.identifier.scopusid57212002531es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650703
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRASes_MX
dc.subject.keywordUnsupervised clusteringes_MX
dc.subject.keywordConsensus clusteringes_MX
dc.subject.keywordSubtypes discoveringes_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.lcshSciencees_MX
dc.titleRobust unsupervised statistical learning for the identification and prediction of the risk profileses_MX
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Nezhadmoghadam_TesisDoctoralpdfa.pdf
Size:
5.68 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
Nezhadmoghadam_ActadeGradoyDeclaracionAutoriapdfa.pdf
Size:
543.09 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
429.75 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia