Machine learning analysis of antiretroviral procurement strategies in the Mexican government

dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorNuñez Mora, José Antonio
dc.contributor.authorBlanca Iveth Mayorga Basurto
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberMoncada Freire, Galo José
dc.contributor.committeememberFuentes Castro, Hugo Javier
dc.contributor.committeememberCarrasco Acevedo, Guillermo
dc.contributor.committeememberAmorós Espinosa, José Ernesto
dc.contributor.departmentEGADE Business School
dc.contributor.institutionCampus Ciudad de México
dc.contributor.mentorLeón Alvarado, Martha Angélica
dc.date.accepted2024-11-27
dc.date.accessioned2025-01-21T18:07:40Z
dc.date.issued2024-11-27
dc.description.abstractThis dissertation investigates trends in antiretroviral medication (ARV) prices and their impact on public health in Mexico during 2019. The study leverages a dataset comprising 15,220 procurement records collected between 2016 and 2019 to analyze price fluctuations and predict their implications for healthcare systems. Using machine learning models developed in Python-Logistic Regression, Ramdom Forest, and K-Nearest Neighbors (KNN)-this research identifies patterns of increasing and decreasing prices and the factors influencing these trends. The data preprocessing phase involved extensive cleaning, imputation of missing values, feature scaling, and one-hot encoding to handle categorical variables. The dataset was partitioned into training and testing sets using an 80/20 split, ensuring robust validation. Hyperparameter optimization techniques, including grid search and cross-validation, were applied to enhance model performance. The integration of ensemble methods, as exemplified by Ramdom Forest, enabled the capture of complex, non-linear relationships between variables, a critical advantage over simpler models. KNN provided complementary insights into local price clusters, while Logistic Regression offered interpretable coefficients for key predictors. In addition to predictive modeling, the study incorporates a financial evaluation of ARV price fluctuations, estimating the budgetary impact on public health systems. Consolidated purchasing schemes were found to yield significant cost reductions, enhancing access to ARVs for individuals living with HIV/AIDS. A unified ARV pricing database was developed, integrating fragmented data from government procurement systems, ensuring transparency and facilitating reproducibility in future research. This research underscores the transformative potential of data-driven approaches in optimizing pharmaceutical procurement. It highlights the necessity of leveraging machine learning techniques not only for predictive analytics but also for informed decision-making in public health policy.
dc.description.degreeDoctor of Financial Science
dc.format.mediumTexto
dc.identificator530299
dc.identifier.citationMayorga Basurto, B. I. (2024). Machine learning analysis of antiretroviral procurement strategies in the Mexican government. [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703099
dc.identifier.orcid0000-0002-3643-3743
dc.identifier.urihttps://hdl.handle.net/11285/703099
dc.identifier.urihttps://doi.org/10.60473/ritec.168
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subject.classificationCIENCIAS SOCIALES::CIENCIAS ECONÓMICAS::ECONOMETRÍA::OTRAS
dc.subject.keywordARV
dc.subject.keywordTendencias de precios
dc.subject.keywordCompras consolidadas
dc.subject.keywordMéxico
dc.subject.lcshSocial Sciences
dc.titleMachine learning analysis of antiretroviral procurement strategies in the Mexican government
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
Blanca Iveth Mayorga Basurto Tesis.pdf
Size:
2.56 MB
Format:
Adobe Portable Document Format
Description:
Tesis
Loading...
Thumbnail Image
Name:
Blanca Iveth Carta Autorización.pdf
Size:
68.11 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
Blanca Iveth Mayorga Basurto Acta de Grado.pdf
Size:
181.18 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado
Loading...
Thumbnail Image
Name:
Blanca Iveth Mayorga Basurto Declaración de Autoría.pdf
Size:
77.19 KB
Format:
Adobe Portable Document Format
Description:
Declaración de Autoría
Loading...
Thumbnail Image
Name:
Blanca Iveth Mayorga Basurto Firmas acta de grado.pdf
Size:
266.44 KB
Format:
Adobe Portable Document Format
Description:
Firmas acta de grado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia