Reinforcement learning for controlling continuous systems with uncertain dynamics and restricted states using robust neural dynamic programming

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorChairez Oria, Jorge Isaac
dc.contributor.authorGuarneros Sandoval, Israel Alejandro
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberFuentes Aguilar, Rita Quetziquel
dc.contributor.committeememberCarlos Renato Vázquez Topete
dc.contributor.committeememberRoman Flores, Armando
dc.contributor.departmentEscuela de Ingeniería y Ciencias
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorBallesteros Escamilla, Mariana Felisa
dc.date.accepted2025-05-28
dc.date.accessioned2025-06-18T20:24:35Z
dc.date.embargoenddate2027-06
dc.date.issued2025-06
dc.descriptionhttps://orcid.org/0000-0002-7157-2052
dc.description.abstractThis dissertation presents a comprehensive investigation into the use of advanced neural network architectures and control methodologies for modelling and controlling complex robotic systems, with a primary focus on the Stewart Gough platform. Central to this work is developing and validating novel Differential Neural Networks (DNN) architectures designed to improve the fidelity of system identification in scenarios characterized by non-linear and time-varying dynamics. Through simulation and experimental validation, a new State-Input DNN (SIADNN) demonstrated superior identification accuracy over traditional DNN, particularly in capturing dynamic behaviours where system states non-trivially influence system responses. Beyond identification, the SIADNN architecture proves to be well-suited for applications in model predictive control and adaptive control frameworks, eliminating the need for extensive linearization and reducing computational burden. Its capability to model systems with time-varying parameters enables more robust and scalable solutions in control design. Additionally, the dissertation explores integrating the DNN model into reinforcement learning (RL) pipelines, leveraging the MATLAB Reinforcement Learning Toolbox to optimize control strategies. Experimental results confirm the efficacy of this hybrid approach in enhancing trajectory tracking and overall control performance of the Stewart platform. The synergy between neural identification and learning-based control highlighted in this work offers a robust framework for dealing with uncertain, high-dimensional robotic systems. The findings advocate for the broader adoption of hybrid neural architectures in intelligent control applications and pave the way for future research in real-time adaptive and data-driven control strategies.
dc.description.degreeDoctorado en Ciencias de Ingeniería
dc.format.mediumTexto
dc.identificator7||330416
dc.identifier.citationGuarneros Sandoval, I. A. (2025). Reinforcement learning for controlling continuous systems with uncertain dynamics and restricted states using robust neural dynamic programming [Tesis doctorado] Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703763
dc.identifier.cvu966608
dc.identifier.orcidhttps://orcid.org/0000-0002-6296-4900
dc.identifier.scopusid57411364000
dc.identifier.urihttps://hdl.handle.net/11285/703763
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONACyT
dc.relation.isFormatOfpublishedVersion
dc.rightsopenAccess
dc.rights.embargoreasonEvitar índice de similitud para los artículos científicos derivados de este trabajo
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::DISEÑO LÓGICO
dc.subject.keywordReinforcement Learning
dc.subject.keywordOptimal Control
dc.subject.keywordAdaptive Dynamic Programming
dc.subject.keywordDifferential Neural Networks
dc.subject.keywordBarrier Lyapunov Function
dc.subject.lcshTechnology
dc.titleReinforcement learning for controlling continuous systems with uncertain dynamics and restricted states using robust neural dynamic programming
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
GuarnerosSandoval_TesisDoctorado.pdfa.pdf
Size:
16.95 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
GuarnerosSandoval_CartaAutorizacionpdfa.pdf
Size:
125.78 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
GuarnerosSandoval_FirmasActadeGrado.pdfa.pdf
Size:
514.45 KB
Format:
Adobe Portable Document Format
Description:
Firmas Acta de Grado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia