Comparative multi-objective optimization using neural networks for ejector refrigeration systems with LiBr and LiCl working agents

dc.contributor.affiliationhttps://ror.org/05hkxne09es_MX
dc.contributor.affiliationhttps://ror.org/05hkxne09es_MX
dc.contributor.affiliationhttps://ror.org/05vf56z40es_MX
dc.contributor.affiliationhttps://ror.org/0091vmj44es_MX
dc.contributor.affiliationhttps://ror.org/03ayjn504es_MX
dc.contributor.authorKhanmohammadi, Shoaib
dc.contributor.authorAhmadi, Pouria
dc.contributor.authorJahangiri, Ali
dc.contributor.authorIzadi, Ali
dc.contributor.authorTariq, Rasikh
dc.date.accessioned2024-07-30T17:50:29Z
dc.date.available2024-07-30T17:50:29Z
dc.date.issued2024-08
dc.description.abstractEducation's evolution in the context of energy systems is essential for addressing sustainable energy challenges and developing a workforce equipped for future innovations, emphasizing both formal curricula and informal lifelong learning through successful energy case studies. As the global energy sector transforms to reduce carbon emissions and reliance on fossil fuels, innovations in renewable technologies like solar thermal are pivotal for promoting energy security and economic stability, supported by an educational foundation that fosters awareness and technical skills for sustainable development. Exposure to successful renewable energy systems, such as solar-powered refrigeration, offers an informal educational experience that enhances understanding and supports global educational goals, initiating with the innovative design and optimization of these systems using artificial intelligence (neural networks). Based on this formulation, the current article developed two sustainable energy systems by comparing the refrigeration cycles with two different operating fluids and various arrangements, and multi-objective optimization with an evolutionary genetic algorithm is performed for the proposed systems. The studied systems are refrigeration cycles using an ejector and without an ejector with two working fluids of lithium bromide and lithium chloride. The present work's main aim is to examine the working fluid and refrigeration system arrangements. Energy and economic modeling were performed for the proposed systems, and then parametric analysis and two-objective optimization were extracted. Parameters such as generator temperature, condenser temperature, absorber temperature, and evaporator temperature, which significantly impact the proposed system's performance, have been selected as decision parameters, and parametric analysis has been extracted for them. In addition to the mentioned parameters, diffusion mixing efficiency, nozzle efficiency, and heat exchanger have also been studied in the ejector asset system. To find the best values of decision variables, multi-objective optimization for both arrangements is conducted, and results are presented. The results have indicated that the refrigeration system using lithium chloride working fluid without an ejector achieves a coefficient of performance of 0.766 and a cost of 0.922 $/h at the optimal point, while the system with an ejector yields a higher coefficient of performance (1.047) and a slightly lower cost rate (0.991 $/h). The outcomes of this work can play a critical role for higher education institutions in advancing innovative solutions to pressing energy challenges. Lifelong learning, at the heart of educational innovation, can benefit from the integration of sustainable energy systems as a core component of informal education through the optimization of ejector refrigeration systems.es_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3306es_MX
dc.identifier.citationShoaib Khanmohammadi, Pouria Ahmadi, Ali Jahangiri, Ali Izadi, Rasikh Tariq, Comparative multi-objective optimization using neural networks for ejector refrigeration systems with LiBr and LiCl working agents, Case Studies in Thermal Engineeringes_MX
dc.identifier.doihttps://doi.org/10.1016/j.csite.2024.104660
dc.identifier.issue104660es_MX
dc.identifier.journalCase Studies in Thermal Engineeringes_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-7659-7363es_MX
dc.identifier.orcidhttps://orcid.org/0009-0006-0356-5885es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-2377-6891es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-3310-432Xes_MX
dc.identifier.urihttps://hdl.handle.net/11285/676301
dc.identifier.volume60es_MX
dc.language.isoenges_MX
dc.publisherScience Directes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S2214157X24006919es_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subjectINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::INGENIERÍA Y TECNOLOGÍA ELÉCTRICASes_MX
dc.subject.countryHong Kong / Hong Konges_MX
dc.subject.keywordArtificial neural networkes_MX
dc.subject.keywordgenetic algorithm optimizationes_MX
dc.subject.keywordartificial neural networkes_MX
dc.subject.keywordejector refrigeration systemses_MX
dc.subject.keywordlifelong learninges_MX
dc.subject.keywordeducational innovationes_MX
dc.subject.keywordhigher educationes_MX
dc.subject.keywordcomputational thinkinges_MX
dc.subject.keywordR4C&TEes_MX
dc.subject.lcshTechnologyes_MX
dc.titleComparative multi-objective optimization using neural networks for ejector refrigeration systems with LiBr and LiCl working agentses_MX
dc.typeArtículo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2214157X24006919-main.pdf
Size:
5.57 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.17 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia