Convolutional-morphological neural network applied to medical imaging

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorTamez Peña, José Gerardo
dc.contributor.authorCanales Fiscal, Martha Rebeca
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberTreviño, Victor Manuel
dc.contributor.committeememberMartínez Torteya, Antonio
dc.contributor.committeememberHelguera Martínez, María
dc.contributor.committeememberMartínes Ledesma, Emmanuel
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.date.accepted2023-10-31
dc.date.accessioned2025-09-23T18:23:40Z
dc.date.issued2023-10-17
dc.descriptionhttps://0000-0003-1361-5162
dc.description.abstractMathematical morphology, a versatile technique frequently employed in image processing, finds wide-ranging applications in tasks such as segmentation, filtering, compression, edge detection, and feature extraction. In this study, we focus on the latter application and evaluate the effectiveness of combining mathematical morphology operations with convolution in a deep learning framework, comparing it with handcrafted features paired with traditional machine learning classifiers. To this end, we introduce the Morphological and Convolutional Neural Network (MCNN) trained with Extreme Learning Machines (ELM). Our methodology encompasses an internal assessment, a comparison with three commonly referenced Convolutional Neural Networks (CNNs) - ResNet-18, ShuffleNet-V2, and MobileNet-V2, and an evaluation of performance across four distinct optimizers - ELM, SGD, ADAM, and RProp. We conduct four classification tasks using both the MCNN approach and classic machine learning techniques for glaucoma, melanoma, breast cancer, and COVID-19 detection, leveraging the ORIGA, ISIC, RSNA, and Thermal-Covid datasets, respectively. While the classification performance for glaucoma and melanoma proved reliable, with accuracies of 0.73 (0.67, 0.80) 95% CI and 0.88 (0.84, 0.92) 95% CI, breast cancer and COVID-19 exhibited random classification, yielding accuracies of 0.50 (0.45, 0.57) 95% CI and 0.52 (0.47, 0.57) 95% CI. In this work, we offer several contributions: a deeper exploration of mathematical morphology as a feature extractor for medical diagnosis using deep learning, the introduction of the MCNN method incorporating these operations, an analysis of its strengths and weaknesses, a comparative assessment against conventional handcrafted features, and an examination of performance variations with different optimizers when applying morphological operations.
dc.description.degreeDoctorado en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator120317||320506||120304
dc.identifier.citationCanales-Fiscal, MR (2023). Convolutional-morphological neural network applied to medical imaging [Tesis doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/704147es_MX
dc.identifier.cvu755180es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-2958-3556
dc.identifier.urihttps://hdl.handle.net/11285/704147
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationCONACyTes_MX
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INFORMÁTICA
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::MEDICINA INTERNA::NEFROLOGÍA
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.keywordConvolutional neural networks
dc.subject.keywordMathematical morphology
dc.subject.keywordMedical image analysis
dc.subject.lcshSciencees_MX
dc.titleConvolutional-morphological neural network applied to medical imaginges_MX
dc.typeTesis Doctorado / doctoral Thesises_MX

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
CanalesFiscal_TesisDoctorado.pdf
Size:
3.74 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
CanalesFiscalMartaRebeca_TesisOriginal_pdf
Size:
4.4 MB
Format:
Adobe Portable Document Format
Description:
Tesis Original
Loading...
Thumbnail Image
Name:
CanalesFiscal_ActaGradoDeclaracionAutoria.pdf
Size:
580.2 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
CanalesFiscal_CartaAutorizacion_pdf
Size:
167.73 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia