A comprehensive analysis of behavioural economics applied to social media using automated methods and asymmetric modelling

dc.audience.educationlevelAdministradores/Administratorses_MX
dc.audience.educationlevelEmpresas/Companieses_MX
dc.audience.educationlevelEstudiantes/Studentses_MX
dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.audience.educationlevelLegisladores/Legislatorses_MX
dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorGarcia Medina, Andres
dc.contributor.authorMendoza Urdiales, Román Alejandro
dc.contributor.catalogeremijzaratees_MX
dc.contributor.committeememberMiguel, Gonzalez Mendoza
dc.contributor.departmentEscuela de Graduados en Administración y Dirección de Empresases_MX
dc.contributor.institutionSede EGADE Santa Fees_MX
dc.contributor.mentorNuñez Mora, José Antonio
dc.creatorGARCIA MEDINA, ANDRES; 298598
dc.date.accepted2022-09-01
dc.date.accessioned2022-11-25T21:02:40Z
dc.date.available2022-11-25T21:02:40Z
dc.date.issued2022
dc.descriptionhttps://orcid.org/0000-0002-2198-880Xes_MX
dc.description.abstractFinancial economic research has extensively documented the fact that the impact of the arrival of negative news on stock prices is more intense than that of the arrival of positive news. The authors of the present study followed an innovative approach based on the utilization of two artificial intelligence algorithms to test that asymmetric response effect. Methods: The first algorithm was used to web scrape the social network Twitter to download the top tweets of the 24 largest market-capitalized publicly traded companies in the world during the last decade. A second algorithm was then used to analyze the contents of the tweets, converting that information into social sentiment indexes and building a time series for each considered company. After comparing the social sentiment indexes’ movements with the daily closing stock price of individual companies using transfer entropy, our estimations confirmed that the intensity of the impact of negative and positive news on the daily stock prices is statistically different, as well as that the intensity with which negative news affects stock prices is greater than that of positive news. The results support the idea of the asymmetric effect that negative sentiment has a greater effect than positive sentiment, and these results were confirmed with the EGARCH modeles_MX
dc.description.degreeDoctor of Philosophy in Financial Scienceses_MX
dc.format.mediumTextoes_MX
dc.identificator5||53||5302es_MX
dc.identifier.citationMendoza Urdiales, R. A. (2022). A comprehensive analysis of behavioural economics applied to social media using automated methods and asymmetric modelling (Disertación doctoral). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/649938es_MX
dc.identifier.cvu904372es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-2888-156Xes_MX
dc.identifier.scopusid57272941600es_MX
dc.identifier.urihttps://hdl.handle.net/11285/649938
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationCIENCIAS SOCIALES::CIENCIAS ECONÓMICAS::ECONOMETRÍAes_MX
dc.subject.keywordTransfer Entropyes_MX
dc.subject.keywordNatural Languaje Processinges_MX
dc.subject.keywordSentiment Analysises_MX
dc.subject.keywordBehavioral Economicses_MX
dc.subject.lcshSocial Scienceses_MX
dc.subject.lcshSciencees_MX
dc.titleA comprehensive analysis of behavioural economics applied to social media using automated methods and asymmetric modellinges_MX
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
MendozaUrdialez_PhDDissertation_PDFA.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format
Description:
Disertación Doctorado
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON (1).pdf
Size:
144.84 KB
Format:
Adobe Portable Document Format
Description:
Uso de obra
Loading...
Thumbnail Image
Name:
MendozaUrdialez_HojaFirmas_PDFA.pdf
Size:
142.84 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia