Tesis de maestría

Occupancy Estimation in Enclosed Spaces using an Indirect Approach, laying the Foundations to Build an IoT Architecture

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

The buildings industry accounts for 30% to 40% of total consumed energy worldwide, and with most of this energy coming from fossil fuels, improving energy efficiency is critical to reducing the harmful effects of this industry on the environment. Fortunately, opportune information about the number of occupants has been identified as a significant contributor to improving energy efficiency. The several works that have been carried out to solve the problem of occupancy detection/estimation fall in one of the following categories: (1) direct approaches based on sensors and cameras to measure occupancy directly, and (2) indirect approaches based on environmental data to derive the occupancy information. Due to the cost and privacy issues, indirect approaches are preferred for most use cases. This thesis focused on estimating occupancy in buildings’ indoor spaces using environmental variables andMachine Learning techniques. Specifically, the use of temperature, humidity, and pressure information was proposed to estimate the level of occupancy. Additionally, feature selection and time resolution selection steps were used to achieve high accuracy. In the process, it was necessary to generate a dataset with occupancy information from two different locations with contrasting characteristics. This dataset is an essential contribution as no other dataset suitable for estimating occupancy using the proposed environmental variables is publicly accessible.Likewise, a review of IoT platforms was carried out to identify the components required to build an occupancy estimation system. Among the contributions, it is reported that at least98% of accuracy can be achieved using this approach and a kNN model. Also, a theoretical architecture for an occupancy estimation system using AWS IoT Core was documented. Finally, the generated dataset was made publicly accessible through the Mendeley Data repository.

Description

https://orcid.org/0000-0002-2460-3442

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia