Tesis de maestría / master thesis

Deep Learning Approach for Alzheimer’s Disease Classification: Integrating Multimodal MRI and FDG- PET Imaging Through Dual Feature Extractors and Shared Neural Network Processing

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder whose incidence is expected to grow in the coming years. Traditional diagnostic methods, such as MRI and FDG-PET, each provide valuable but limited insights into the disease’s pathology. This thesis researches the potential of a multimodal deep learning classifier to improve the diagnostic accuracy of AD by integrating MRI and FDG-PET imaging data in comparison to single modality implementations. The study proposes a lightweight neural architecture that uses the strengths of both imaging modalities, aiming to reduce computational costs while maintaining state-of-the-art diagnostic performance. The proposed model utilizes two pre-trained feature extractors, one for each imaging modality, fine-tuned to capture the relevant features from the dataset. The outputs of these extractors are fused into a single vector to form an enriched feature map that better describes the brain. Experimental results demonstrate that the multimodal classifier outperforms single modality classifiers, achieving an overall accuracy of 90% on the test dataset. The VGG19 model was the best feature extractor for both MRI and PET data since it showed superior performance when compared to the other experimental models, with an accuracy of 71.9% for MRI and 80.3% for PET images. The multimodal implementation also exhibited higher precision, recall, and F1 scores than the single-modality implementations. For instance, it achieved a precision of 0.90, recall of 0.94, and F1-score of 0.92 for the AD class and a precision of 0.89, recall of 0.82, and F1-score of 0.86 for the CN class. Furthermore, explainable AI techniques provided insights into the model’s decisionmaking process, revealing that it effectively utilizes both structural and metabolic information to distinguish between AD and cognitively normal (CN) subjects. This research adds supporting evidence into the potential of multimodal imaging and machine learning to enhance early detection and diagnosis of Alzheimer’s disease, offering a cost-effective solution suitable for widespread clinical applications.

Description

https://orcid.org/0000-0002-4270-0350

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia