Security automation in software defined networks
| dc.audience.educationlevel | Investigadores/Researchers | es_MX |
| dc.contributor.advisor | Vargas Rosales, César | |
| dc.contributor.author | Yungaicela Naula, Noé Marcelo | |
| dc.contributor.cataloger | puemcuervo, emipsanchez | es_MX |
| dc.contributor.committeemember | Zareei, Mahdi | |
| dc.contributor.committeemember | Ramírez Velarde, Raúl Valente | |
| dc.contributor.committeemember | Rodríguez Cruz, José Ramón | |
| dc.contributor.department | School of Engineering and Sciences | es_MX |
| dc.contributor.institution | Campus Monterrey | es_MX |
| dc.contributor.mentor | Pérez Díaz, Jesús Arturo | |
| dc.creator | YUNGAICELA NAULA, NOE MARCELO; 781291 | |
| dc.date.accepted | 2023-06-01 | |
| dc.date.accessioned | 2023-09-19T22:54:25Z | |
| dc.date.available | 2023-09-19T22:54:25Z | |
| dc.date.issued | 2023-06-01 | |
| dc.description | https://orcid.org/0000-0003-1770-471X | es_MX |
| dc.description.abstract | The exponential increase of devices connected to the internet, and the conventional networking operation, based on distributed and static network management, have made networking an incredibly complex task. Software-Defined Networking (SDN) solves the problems arising from the static nature of conventional networking by introducing dynamism to the networking operation. SDN separates the data plane and control plane, centralizes the network control, and automates the network management. In particular, SDN technology is an effective solution to provide security to different network environments. This study solves the security problem in SDN-based networks using state-of-the-art artificial intelligent (AI) techniques. An automated security framework is proposed which integrates two components: 1) Reactive, and 2) Proactive parts. The reactive component uses Deep Learning (DL) to identify complex DDoS threats and Reinforcement Learning (RL) to mitigate them. The proactive component leverages Network Function Virtualization (NFV) to provide scalability to the proposed security framework. Extensive experiments using datasets, simulations, and physical deployments demonstrate the effectiveness of the proposed security automation framework. | es_MX |
| dc.description.degree | Doctor of Philosophy in Engineering Sciences Major in Telecommunications | es_MX |
| dc.format.medium | Texto | es_MX |
| dc.identificator | 7||33||3304||120304 | es_MX |
| dc.identifier.citation | Yungaicela Naula, N. M. (2023). Security automation in software defined networks [Tesis Doctorado]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/651165 | es_MX |
| dc.identifier.cvu | 781291 | es_MX |
| dc.identifier.orcid | https://orcid.org/0000-0002-3131-0672 | es_MX |
| dc.identifier.scopusid | 57203986401 | es_MX |
| dc.identifier.uri | https://hdl.handle.net/11285/651165 | |
| dc.language.iso | eng | es_MX |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | es_MX |
| dc.relation.isFormatOf | publishedVersion | es_MX |
| dc.relation.isreferencedby | REPOSITORIO NACIONAL CONACYT | |
| dc.rights | openAccess | es_MX |
| dc.rights.embargoreason | El documento de tesis contiene información de artículos publicados que requieren embargo de dos años a su fecha de publicación. El último artículo incluido en el documento se estima que será publicado a más tardar a finales del año 2023, en la revista Future Generation Computer Systems (Online ISSN: 1872-7115) que tiene un periodo de embargo de 24 meses. | es_MX |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | es_MX |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL | es_MX |
| dc.subject.keyword | Machine learning | es_MX |
| dc.subject.keyword | Deep learning | es_MX |
| dc.subject.keyword | Reinforcement learning | es_MX |
| dc.subject.keyword | Network security | es_MX |
| dc.subject.keyword | Software defined network | es_MX |
| dc.subject.keyword | DDoS attacks | es_MX |
| dc.subject.keyword | Slow-rate DDoS attacks | es_MX |
| dc.subject.lcsh | Technology | es_MX |
| dc.title | Security automation in software defined networks | es_MX |
| dc.type | Tesis de doctorado |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- YungaicelaNaula_TesisDoctoradopdfa.pdf
- Size:
- 12.92 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Doctorado
Loading...
- Name:
- YungaicelaNaula_ActaGradoDeclaracionAutoriapdfa.pdf
- Size:
- 680.08 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acta de Grado y Declaración Autoría
Loading...
- Name:
- formato autorizacion tesis.pdf
- Size:
- 232.5 KB
- Format:
- Adobe Portable Document Format
- Description:
- Formato de autorización de tesis
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.3 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

