Forecasting gender in open education competencies: A machine learning approach

dc.contributor.affiliationhttps://ror.org/03ayjn504es_MX
dc.contributor.authorIbarra Vázquez, Gerardo
dc.contributor.authorRamírez Montoya, María Soledad
dc.date.accessioned2023-12-04T22:23:53Z
dc.date.available2023-12-04T22:23:53Z
dc.date.issued2023-11-29
dc.description.abstractThis article aims to study the performance of machine learning models in forecasting gender based on the students' open education competency perception. Data were collected from a convenience sample of 326 students from 26 countries using the eOpen instrument. The analysis comprises 1) a study of the students' perceptions of knowledge, skills, and attitudes or values related to open education and its sub-competencies from a 30-item questionnaire using machine learning models to forecast participants' gender, 2) validation of performance through cross-validation methods, 3) statistical analysis to find significant differences between machine learning models, and 4) an analysis from explainable machine learning models to find relevant features to forecast gender. The results confirm our hypothesis that the performance of machine learning models can effectively forecast gender based on the student's perceptions of knowledge, skills, and attitudes or values related to open education competency.es_MX
dc.format.mediumTextoes_MX
dc.identificator4||58||5801es_MX
dc.identifier.citationIbarra-Vazquez, G., Ramírez-Montoya, M. S. & Buenestado-Fernández, M. (2023). Forecasting Gender in Open Education Competencies: A Machine Learning Approach. IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2023.3336541es_MX
dc.identifier.doihttps://doi.org/10.1109/TLT.2023.3336541
dc.identifier.journalIEEE Transactions on Learning Technologieses_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-0782-5369es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-1274-706Xes_MX
dc.identifier.urihttps://hdl.handle.net/11285/651603
dc.language.isoenges_MX
dc.publisherIEEEXplorees_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.urlhttps://ieeexplore.ieee.org/document/10334475es_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTA::PEDAGOGÍA::TEORÍA Y MÉTODOS EDUCATIVOSes_MX
dc.subject.countryEstados Unidos de América / United Stateses_MX
dc.subject.keywordopen educationes_MX
dc.subject.keywordforecastinges_MX
dc.subject.keywordgenderes_MX
dc.subject.keywordstudent perceptiones_MX
dc.subject.keywordexplainablees_MX
dc.subject.keywordmachine learninges_MX
dc.subject.keywordhigher educationes_MX
dc.subject.keywordeducational innovationes_MX
dc.subject.lcshEducationes_MX
dc.titleForecasting gender in open education competencies: A machine learning approaches_MX
dc.typeArtículo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023-Forecasting_Gender.pdf
Size:
15.78 MB
Format:
Adobe Portable Document Format
Description:
Article PDF/A

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.17 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia