A methodology to select downsized object detection algorithms for resource-constrained hardware using custom-trained datasets

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorPonce Cruz, Pedro
dc.contributor.authorMedina Rosales, Adán
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberLópez Cadena, Edgar Omar
dc.contributor.committeememberMontesinos Silva, Luis Arturo
dc.contributor.committeememberBalderas Silva, David Christopher
dc.contributor.committeememberPonce Espinosa, Hiram Eredín
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Ciudad de México
dc.date.accepted2025-12-03
dc.date.accessioned2025-12-15T00:44:28Z
dc.date.embargoenddate2029-12-06
dc.date.issued2025-12-03
dc.descriptionhttps://orcid.org/0000-0001-7035-5286
dc.description36787347100
dc.description.abstractDownsized object detection algorithms have gained relevance with the exploration of edge computing and implementation of these algorithms in small mobile devices like drones or small robots. This has led to an exponential growth of the field with several new algorithms being presented every year. With no time to test them all most benchmark focus on testing the full sized versions and comparing training results. This however, creates a gap in the state of the art since no comparisons of downsized algorithms are being presented, specifically using custom built datasets to train the algorithms and restrained hardware devices to implement them. This work aims to provide the reader with a comprehensive understanding of several metrics obtained not only from training metrics, but also from implementation to have a more complete picture on the behavior of the downsized algorithms (mostly from the YOLO algorithm family), when trained with small datasets, by using a fiber extrusion device with three classes: one that has no defects, one that is very similar looking with small changes and one that has a more immediate tell in the difference, showcasing how good the algorithms tell apart each class using two different size of datasets, while also providing information on training times and different restrained hardware implementation results. Providing results on implementation metrics as well as training metrics.
dc.description.degreeDoctor of Philosophy in Engineering Sciences
dc.format.mediumTexto
dc.identificator120304||120326
dc.identifier.orcidhttps://orcid.org/0000-0001-8769-0793
dc.identifier.scopusid57267388700
dc.identifier.urihttps://hdl.handle.net/11285/705291
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfpublishedVersion
dc.rightsopenAccess
dc.rights.embargoreasonLa tésis es por artículos, pero algunos artículos siguen en revisión, por lo que para evitar problemas en la publicación de los artículos, la información presentada en la tésis no se puede hacer pública hasta que se hayan publicado los artículos
dc.rights.urihttp://creativecommons.org/about/cc0/
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SIMULACIÓN
dc.subject.keywordObject detection
dc.subject.keywordAlgorithm Selection
dc.subject.keywordMethodology,
dc.subject.keywordDown-sized
dc.subject.keywordRestricted Hardware
dc.subject.lcshScience
dc.subject.lcshTechnology
dc.titleA methodology to select downsized object detection algorithms for resource-constrained hardware using custom-trained datasets
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
MedinaRosales_TesisOriginal
Size:
44.49 MB
Format:
Adobe Portable Document Format
Description:
Tesis Original
Loading...
Thumbnail Image
Name:
MedinaRosales_CartaAutorizacion
Size:
78.28 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
MedinaRosales_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
343.02 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
MedinaRosales_TesisDoctorado_pdfa.pdf
Size:
40.94 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia