Conferencia

Design and challenges of open large language model frameworks (Open LLM): a systematic literature mapping

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

Analyzing the frameworks of open large language models (OLLM) is essential to understanding how the management of these artificial intelligence (AI) models can be regulated. This study aims to analyze the evidence published from 2019 to 2024 regarding OLLM frameworks that integrate AI. Systematic mapping was the method for reviewing 227 articles published in the Scopus and Web of Science (WoS) databases. Inclusion, exclusion, and quality criteria filtered the papers to obtain the maximum relevant information. The analysis and classification of articles related to open LLM frameworks and models yielded significant findings per our research questions. The challenges identified were a) improving customization and accuracy through open LLMs, b) latency and efficiency challenges, c) the importance of reliability and security, and d) complex operational management (LLMOps). This review provides a framework for identifying the topic's state of the art and current and emerging research trends.

Collections

Loading...

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia