A methodology based on eXplainable Artificial Intelligence for identifying, measuring, and reporting differences of feature effects between subpopulations

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorCeballos Cancino, Héctor Gibran
dc.contributor.authorTalamás Carvajal, Juan Andrés
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberAlvarado, Joanna
dc.contributor.committeememberGarza, Sara Elena
dc.contributor.committeememberLallé, Sébastien
dc.contributor.committeememberHilliger, Isabel
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorHernández Gress, Neil
dc.date.accepted2024-11-07
dc.date.accessioned2025-09-12T20:33:27Z
dc.date.issued2021-02
dc.descriptionhttps://orcid.org/0000-0002-2460-3442es_MX
dc.description.abstractIn the same way that it is a mistake to deal with a cold and influenza with the same treatment because both are respiratory illnesses, it is not optimal to take the same approach with two distinct groups just because they have the same problem or are in a similar situation. It is important to realize that the inherent differences between groups will influence the effect of the different features or variables that make up that scenario on the outcome. While we could attribute these effects to the distinction in groups, that makes it impossible for us to act in cases where the category is immutable. In this Thesis I present a novel methodology regarding sub-population comparison using Shapley values and feature effect concepts. This methodology is capable of identifying variations in feature effects in importance, magnitude, and direction between groups, and present these results in an explainable manner. The methodology presented is a model and situation agnostic one, allowing for its use on several different situations and cases. The resulting explanations are also given in the context of the features of each case, meaning that they could be used for the development of interventions (both global or individual), or for better understanding the situation at hand. The methodology was built under the principles and goals of explainable AI, and validated by expert opinions on the case study fields. With the development of this methodology and its validation, we give evidence that it is possible to identify variations in feature effects in importance, magnitude, and direction between groups using Explainable AI, and that these differences can be used to provide recommendations for personalized interventions for individuals or groups. The resulting methodology is useful in cases where explanations of predictive models are not only desirable but essential, as the provided explanations can be used for the development of interventions or counterfactuals where needed, even if the final user is not extensively trained in data science.es_MX
dc.description.degreeDoctorado en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator120304
dc.identifier.citationTalamas-Carvajal, J.A. (2024). A methodology based on eXplainable Artificial Intelligence for identifying, measuring, and reporting differences of feature effects between subpopulations [Tesis doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/704101es_MX
dc.identifier.cvu840053es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-6140-088X
dc.identifier.scopusid58126519600es_MX
dc.identifier.urihttps://hdl.handle.net/11285/704101
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.keywordXAIes_MX
dc.subject.keywordLearning Analyticses_MX
dc.subject.keywordEffect Sizees_MX
dc.subject.keywordDifferences in effects between Subgroupses_MX
dc.subject.lcshTechnology
dc.subject.otherSciencees_MX
dc.titleA methodology based on eXplainable Artificial Intelligence for identifying, measuring, and reporting differences of feature effects between subpopulationses_MX
dc.typeTesis Doctorado / doctoral Thesises_MX

Files

Original bundle

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
TalamasCarvajal_TesisDoctorado_pdfa.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
TalamasCarvajal_TesisOriginal
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
Tesis Original
Loading...
Thumbnail Image
Name:
TalamasCarvajal_CartaAprobacionProtocolo_pdfa.pdf
Size:
211.29 KB
Format:
Adobe Portable Document Format
Description:
Carta Aprobación
Loading...
Thumbnail Image
Name:
TalamaCarvajal_ActaGrado_pdfa.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
TalamasCarvajal_CartaAutoriación
Size:
114.38 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia