Artículo de conferencia

Modelling intelligent agents through causality theory

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

We introduce Causal Agents, a methodology and agent architecture for modeling intelligent agents based on Causality Theory. We draw upon concepts from classical philosophy about metaphysical causes of existing entities for defining agents in terms of their formal, material, efficient and final causes and use computational mechanisms from Bayesian causal models for designing causal agents. Agent's intentions, interactions and performance are governed by their final causes. A Semantic Bayesian Causal Model, which integrates a probabilistic causal model with a semantic layer, is used by agents for knowledge representation and inference. Agents are able to use semantic information from external stimuli (utterances, for example) which are mapped into the agent's causal model for reasoning about causal relationships with probabilistic methods. Our theory is being tested by an operational multiagents system implementation for managing research products.

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia