Tesis de maestría

Data-driven modeling and bayesian optimization of cooling towers for the reduction of water consumption

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

This study presents a data-driven framework that integrates Machine Learning and Bayesian Optimization to minimize water consumption in industrial cooling towers while preserving cooling efficiency. Using historical operational and environmental data from a power generation facility, several regression models (Linear Regression, Random Forest, XGBoost, and Neural Networks) were developed to predict makeup water flow. Random Forest and XGBoost achieved the highest accuracy, with R2 scores of 0.982 and 0.972, respectively. Bayesian Optimization was employed to efficiently tune hyperparameters, yielding substantial improvements in predictive performance such as reducing RMSE by up to 18.6%. The methodology also incorporated feature importance analysis, which identified critical operational drivers such as blowdown flow and inlet water temperature. Overall, Random Forest was preferred due to its superior predictive accuracy, ease of interpretation, and practical integration into operational dashboards. By combining predictive modeling, optimization, and interpretability, the study offers a powerful methodology for a data-driven tool to support decision-making and identify opportunities for minimizing makeup water use in cooling tower operation.

Description

https://orcid.org/0000-0001-9249-8878

56002678300

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia