Human learning curve forecasting & optimization framework for manual assembly operations

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorRomero Díaz, David Carlos
dc.contributor.authorPeña Olvera, Carlos Adrián
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberJohansson, Björn
dc.contributor.committeememberRuiz Loza, Sergio
dc.contributor.committeememberEscobar Castillejos, David Escobar
dc.contributor.departmentDepartamento de Ingenieria y Ciencias
dc.contributor.institutionCampus Ciudad de México
dc.contributor.mentorNoguez Monroy, Juana Julieta
dc.date.accepted2025-11-25
dc.date.accessioned2025-12-14T13:46:58Z
dc.date.embargoenddate2026-12-13
dc.date.issued2025-12-04
dc.descriptionhttps://orcid.org0000-0003-3610-0751
dc.description.abstractThe manufacturing industry is undergoing a significant transformation, led by the widespread adoption of Industry 4.0 technologies and data-driven production management systems. While monitoring and optimization have become common for machine operations, manual operations are mostly disconnected from these advancements, due to persistent challenges in data acquisition and the intrusiveness of monitoring methods. More importantly, low-cost countries keep manual assembly a core part of their operations, based on costs and flexibility. This second element, however, presents a challenge to companies, due to human behavior not being as perfectly repetitive as machines, leading to differences between planned production time and actual production time. One factor not currently considered in planning cycle times and production capacity is the learning effect, represented by prolonged cycle times in the first production units, but improving over time. Traditional approaches to track the learning effect have seen little application on processes in recent times, resulting in missed opportunities for productivity forecasting and optimization. The primary objective of this thesis is to present a comprehensive framework for the collection, operational forecasting, and productivity enhancement of production cycle times in manual operations by leveraging data paired with a simple data collection method. This work proposes a novel human learning curve measurement and optimization solution that mirrors the sophistication of machine monitoring applied to humans. It also considers a data problem commonly found in the manufacturing industry, which is excessive data collection, making predictions and fitting curves computationally expensive, by considering a simplification method. Key contributions of this Ph.D. thesis include a state-of-the-art review on learning curves, learning curve parameterization methods, and data simplification techniques, which led to the development of a “Human Learning Curve Forecasting and Optimization Framework”. The Ph.D. thesis also presents both controlled and industrial experimentation for the validation of the framework. The Ph.D. thesis results present the benefits of analyzing the human learning effect in productivity, presenting the industry with the opportunity to take immediate action to improve and increase efficiency in the short- and long-term, ultimately integrating the human factor in the decision-making for performance improvements. The Ph.D. thesis presented calls for a change in the way manual operations are being analyzed, by considering the learning curve effect, analyzing it in the short- and long-term, and presenting an alternative way to plan production in line.
dc.description.degreeDoctor of Philosophy in Engineering Sciences
dc.format.mediumTexto
dc.identificator531108
dc.identifier.urihttps://hdl.handle.net/11285/705787
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfpublishedVersion
dc.rightsopenAccess
dc.rights.embargoreasonPor política las tesis de Ciencias Exactas y Ciencias de la Salud estarán en embargo por 1 año
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA INDUSTRIAL::NIVELES ÓPTIMOS DE PRODUCCIÓN
dc.subject.keywordLearning Curve
dc.subject.keywordManual Assembly
dc.subject.keywordIndustry 4.0
dc.subject.lcshScience
dc.titleHuman learning curve forecasting & optimization framework for manual assembly operations
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
PenaOlvera_CartaAutorizacion_pdfa
Size:
85.69 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
PenaOlvera_TesidDoctoradoOriginal_pdf
Size:
6.82 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
PenaOlvera_ActaGradoDeclaracionAutoria_pdfa
Size:
400.42 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
PenaOlvera_TesisDoctorado._pdfa.pdf
Size:
6.61 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia