A stable real-time implementation model predictive control for fast nonlinear systems

dc.audience.educationlevelOtros/Other
dc.contributor.advisorFavela Contreras, Antonio Ramón Xicoténcatl
dc.contributor.authorRodríguez Guevara, Daniel Orlando
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberLozoya Gámez, Rafael Camilo
dc.contributor.committeememberSotelo Molina, Carlos Gustavo
dc.contributor.committeememberSotelo Molina, David Alejandro
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorBeltrán Carbajal, Francisco
dc.date.accepted2024-12-03
dc.date.accessioned2024-12-28T04:47:33Z
dc.date.embargoenddate2025-12-31
dc.date.issued2024-12-03
dc.descriptionhttps://orcid.org/0000-0003-0721-9526
dc.description.abstractThis dissertation presents two novel approaches for real-time implementation of robust Model Predictive Control (MPC) for fast complex nonlinear systems. These approaches use a linearization step of the model of the system by two different strategies depending on the nature of the nonlinear system. Linear Parameter Varying (LPV) modeling and Differential Flatness representation are the strategies chosen to develop the Model Predictive Controller. LPV modeling consists of the embedding of the nonlinear terms of the system into a series of scheduling parameters. Therefore, the Model Predictive Control is designed using a linear model being a function of the scheduling parameter to predict the behavior of the states of the system along the prediction horizon. The future values of the scheduling parameters are estimated using a recursive least squares algorithm. Both stability and robustness conditions are ensured using Linear Matrix Inequalities (LMI) constraints included in the optimization problem of the MPC. Finally, terminal ellipsoidal sets are introduced in the cost function to improve the performance of the controller. On the other hand, Differential Flatness representation is used to build a linear MPC to exploit the flatness property of some nonlinear systems. In this approach, the nonlinear model is solved as a function of the flat outputs of the system and its derivatives. Thus, a linear optimization problem is solved to predict the future behavior of the flat output and its derivatives as a function of an auxiliary control variable. Afterward, a feedforward controller is designed to define the optimal control action to be inputted into the system as a function of the auxiliary control variable. Finally, the performance of both control strategies is tested with several simulations of complex nonlinear systems using the Matlab-Simulink environment
dc.description.degreeDoctor of Philosophy In Engineering Science Major in Automatic Control
dc.format.mediumTexto
dc.identificator339999
dc.identifier.citationRodríguez Guevara, D. O. (2024), A stable real-time implementation model predictive control for fast nonlinear systems [Tesis doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/702948
dc.identifier.cvu963951
dc.identifier.orcidhttps://orcid.org/0000-0001-9884-556X
dc.identifier.urihttps://hdl.handle.net/11285/702948
dc.identifier.urihttps://doi.org/10.60473/ritec.24
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsembargoedAccess
dc.rights.embargoreasonArtículo Científico en Progreso de revisión
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::OTRAS ESPECIALIDADES TECNOLÓGICAS::OTRAS
dc.subject.keywordModel predictive control
dc.subject.keywordLinear parameter varying
dc.subject.keywordEllipsoidal set
dc.subject.keywordQuadratic stabilityAttraction sets
dc.subject.keywordDifferential flatness
dc.subject.lcshTechnology
dc.titleA stable real-time implementation model predictive control for fast nonlinear systems
dc.typeTesis Doctorado / doctoral Thesis

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
RodriguezGuevara_TesisDoctoradopdfa.pdf
Size:
30 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
RodriguezGuevara_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
186.84 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración Autoría
Loading...
Thumbnail Image
Name:
RodriguezGuevara_CartaAutorizacionpdfa.pdf
Size:
116.78 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia