Automatic multi-target clinical classification and biomarker discovery in cancer

dc.audience.educationlevelEstudiantes/Studentses_MX
dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorTreviño Alvarado, Víctor
dc.contributor.authorAyton, Sarah Gabrielle
dc.contributor.catalogerpuemcuervo, emipsanchezes_MX
dc.contributor.committeememberTamez Peña, José Gerardo
dc.contributor.committeememberMartínez Ledesma, Juan Emmanuel
dc.contributor.committeememberPavlicova, Martina
dc.contributor.committeememberMaley, Carlo C.
dc.contributor.committeememberFuentes Aguilar, Rita Q
dc.contributor.committeememberRobles Espinoza, C. Daniela
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorJOSE GERARDO TAMEZ PENA; 3059469
dc.date.accepted2023-05-10
dc.date.accessioned2024-03-27T11:28:22Z
dc.date.available2024-03-27T11:28:22Z
dc.date.issued2023-05-10
dc.descriptionhttps://orcid.org/0000-0002-7472-9844es_MX
dc.description.abstractPrecision medicine relies on accurate and interpretable biomarker and subtype discovery. Many multi-omics subtyping algorithms have been developed to manage subtype identification across platforms but have yet to be evaluated with respect to identification of clinically prognostic subtypes. Further, many comprehensive characterization studies of cancer, which have identified multi-omics subtypes or molecular subtype signatures, have done so through the use of manually-derived expert-designed trees. Despite interpretability, current decision tree approaches are unable to explainably reproduce subtyping findings, owing to the complex nature of molecular and clinical factors driving the disease. Current machine learning (ML) approaches do not achieve interpretability (explainability) across disease endpoints, and models constructed manually by trained experts can be subjective. We develop a multi-objective decision tree (MuTATE) framework which performs automated, explainable, and multi-outcome segmentation to construct interpretable trees, simultaneously identifying biomarkers and subtypes of clinical relevance across disease endpoints. Molecular, clinical, and survey data may be input to identify prognostic biomarkers with either preventive or therapeutic implications. We provide a proof-of-concept for multi-objective, quantitative, explainable trees, enabling interpretable, automated molecular insights for precision medicine. This comprehensive approach can improve therapeutic decisions and has applications across complex diseases, and the availability of our method as an R package enables improved access to comprehensive and quantitaive disease modeling to identify those who may benefit from different treatment plans.es_MX
dc.description.degreeDoctor of Philosophy in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3314||331499es_MX
dc.identifier.citationAyton, S. G. (2023). Automatic multi-target clinical classification and biomarker discovery in cancer [Unpublished doctoral thesis],.Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/652374es_MX
dc.identifier.cvu1012447es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-5247-9912es_MX
dc.identifier.scopusid57214155809es_MX
dc.identifier.urihttps://hdl.handle.net/11285/652374
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfsubmittedVersiones_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.embargoreasonFindings included in this thesis are currently under review and in preparation for publication in academic journals.es_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRASes_MX
dc.subject.keywordPrognosises_MX
dc.subject.keywordPrecision Medicinees_MX
dc.subject.keywordNeoplasmses_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordBiomarkerses_MX
dc.subject.keywordMolecular Modelinges_MX
dc.subject.keywordDecision Treeses_MX
dc.subject.keywordMulti-Objective Segmentationes_MX
dc.subject.keywordMulti-Omicses_MX
dc.subject.lcshSciencees_MX
dc.subject.lcshMedicinees_MX
dc.titleAutomatic multi-target clinical classification and biomarker discovery in canceres_MX
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Ayton_TesisDoctoradopdfa.pdf
Size:
35.79 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
Ayton_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
435.67 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración Autoría
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
134.97 KB
Format:
Adobe Portable Document Format
Description:
CARTA DE AUTORIZACION

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia