Expansion of a novel bio-inspired supervised machine learning class applied to financial forecasting

dc.audience.educationlevelConsejeros/Counsellors
dc.audience.educationlevelEmpresas/Companies
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorTrejo Rodríguez, Luis Ángel
dc.contributor.authorGonzález Núñez, Enrique
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberHervert Escobar, Laura
dc.contributor.committeememberCapote Sanchez, Alfredo Alberto Ramon
dc.contributor.committeememberPonce Espinosa, Hiram Eredín
dc.contributor.committeememberKampouridis, Michael
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.date.accepted2024-03
dc.date.accessioned2025-06-11T02:18:22Z
dc.date.issued2020-02
dc.descriptionhttps://orcid.org/000-0001-9741-4581
dc.description.abstractThe aim presented in this research consists of applying the Artificial Organic Networks (AON), a nature-inspired, supervised, metaheuristic, machine learning framework, toward the defini- tion of a new algorithm based on this machine learning class, capable of employing it for computational finance purposes, specifically, for the modeling and prediction of a stock mar- ket, based on the Index Tracking Problem (ITP). The relevance of computational finance is discussed, pointing out that is an area that has developed significantly in the last decades with different applications, some of these are: rich portfolio optimization, index-tracking, credit risk, stock investment, among others. Specifically, the Index Tracking Problem (ITP) con- cerns the prediction of stock market prices, being this a complex problem of the kind NP-hard. In this regard, this work discusses the innovative approach to implement the AON method to tackle the ITP; thus, the concept of Artificial Halocarbon Compounds or AHC-algorithm is introduced as a supervised machine learning algorithm, and as a new topology based on the AON framework. Through the discussion we review some of the disadvantages that the origi- nal Artificial Hydrocarbon Networks (AHN) topology has; these disadvantages are considered regarding the definition of the new AHC-algorithm. The proficiencies of the AHC model ca- pabilities are measured by modeling the IPC Mexico stock market index, with the aid of other economic indicators, having obtained very promising results, with a computed R-square of 0.9919, and an 8e-4 mean relative error for the forecast; and as a main contribution, the new model is an adaptable, dynamic, and reconfigurable topology, that can be applied to different approaches or systems that require simulation analysis using time series.es_MX
dc.description.degreeDoctor of Philosophy in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator339999
dc.identifier.citationGonzález Núñez, E. (2025). Expansion of a novel bio-inspired supervised machine learning class applied to financial forecasting [Tesis doctorado]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703737
dc.identifier.cvu1045396es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-5410-0483
dc.identifier.scopusid57315226300es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703737
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationITESMes_MX
dc.relationCONAHCytes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.urlhttps://dx.doi.org/10.21227/yvfx-n484es_MX
dc.relation.urlhttps://github.com/egonzaleznez/ahces_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::ENSEÑANZA CON AYUDA DE ORDENADOR
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::OTRAS ESPECIALIDADES TECNOLÓGICAS::OTRAS
dc.subject.keywordArtificial Intelligencees_MX
dc.subject.keywordMachine learninges_MX
dc.subject.keywordBio-inspiredes_MX
dc.subject.keywordMetaheuristices_MX
dc.subject.keywordStock market indexes_MX
dc.subject.keywordFinancial Forecastinges_MX
dc.subject.lcshScience
dc.subject.lcshTechnology
dc.titleExpansion of a novel bio-inspired supervised machine learning class applied to financial forecasting
dc.typeTesis Doctorado / doctoral Thesises_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
GonzalezNunez_TesisDoctorado_pdfa.pdf
Size:
11.48 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
GonzalezNunez_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
400.25 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración Autoría
Loading...
Thumbnail Image
Name:
GonzalezNunez_CartaAutorizacion_pdf.pdf
Size:
86.67 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia