A hybrid multi-objective optimization approach to neural architecture search for super resolution image restoration

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelEmpresas/Companies
dc.audience.educationlevelOtros/Other
dc.contributor.advisorMonroy Borja, Raúl
dc.contributor.authorLlano García, Jesús Leopoldo
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberCantoral Ceballos, José Antonio
dc.contributor.committeememberMezura Montes, Efrén
dc.contributor.committeememberRosales Pérez, Alejandro
dc.contributor.committeememberOchoa Ruiz, Gilberto
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Estado de México
dc.contributor.mentorSosa Hernández, Víctor Adrián
dc.date.accepted2025-06-02
dc.date.accessioned2025-08-17T05:35:33Z
dc.date.issued2025-07
dc.descriptionhttps://orcid.org/0000-0002-8561-9886
dc.description.abstractSuper-resolution image restoration (SRIR) aims to reconstruct a high-resolution image from a degraded low-resolution input. It plays a key role in domains such as surveillance, medical imaging, and content creation. While recent approaches rely on deep neural networks, most architectures remain handcrafted through laborious and error-prone trial-and-error processes. Neural Architecture Search (NAS) seeks to automate the design of deep models, balancing predictive accuracy with constraints like latency and memory usage. Formulating NAS as a bi-level, multi-objective optimization problem highlights these trade-offs and motivates the development of flexible search spaces and strategies that prioritize both performance and efficiency.Prior NAS efforts for SRIR frequently rely on fixed cell structures, scalarized objectives, or computationally intensive pipelines, limiting their practicality on resourceconstrained platforms. Benchmarking shows that such methods often struggle to jointly minimize parameters, FLOPs, and inference time without compromising image reconstruction quality.We propose the Branching Architecture Search Space (BASS), a layer-based, multidepth, multi-branch design that supports dynamic selection, allocation, and repetition of operations. To explore BASS, we introduce a hybrid NAS framework that combines NSGA-III with hill-climbing refinements, guided by SynFlow as a zero-cost trainability estimator. The hybrid approach achieves superior trade-offs in trainability, parameter efficiency, and computational cost when given the same number of function evaluations as vanilla NSGA-III—and reaches comparable Pareto-front approximations with substantially fewer evaluations. The resulting solutions offer enhanced model quality, reduced complexity, and improved deployment suitability for real-world SRIR tasks.Extensive search experiments yield a diverse Pareto front of candidate architectures. Representative designs are fully trained on DIV2K and evaluated across standard SR benchmarks (Set5, Set14, BSD100, Urban100) at →2, →3, and →4 upscales. Balanced models achieve competitive PSNR while operating with significantly fewer parameters and FLOPs than heavyweight baselines. The hybrid search demonstrates faster convergence and improved trade-off resolution compared to single-strategy alternatives, as supported by Bayesian statistical analysis.The combination of BASS and hybrid NSGA-III enables the discovery of SRIR architectures that effectively balance accuracy and resource constraints. This approach facilitates deployment on embedded and real-time systems and offers a generalizable framework for resource-aware NAS across other dense prediction tasks.
dc.description.degreeDoctor of Philosophy in Computer Sciences
dc.format.mediumTexto
dc.identificator220212
dc.identifier.citationLlano García, J. L. (2025). A hybrid multi-objective optimization approach to neural architecture search for super resolution image restoration [Tesis doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey.
dc.identifier.cvu829049
dc.identifier.orcidhttps://orcid.org/0000-0002-8561-9886
dc.identifier.urihttps://hdl.handle.net/11285/704003
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationNational Council of Humanities, Science, and Technology (CONAHCyT)
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::ARQUITECTURA DE ORDENADORES
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::ORDENADORES HÍBRIDOS
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::ENSEÑANZA CON AYUDA DE ORDENADOR
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA ELECTRÓNICA::RAYOS X
dc.subject.keywordAutomated machine learning
dc.subject.keywordDeep learning
dc.subject.keywordEvolutionary computation
dc.subject.keywordImage restoration
dc.subject.keywordNeural architecture search
dc.subject.keywordPareto optimization
dc.subject.keywordSuper resolution
dc.subject.lcshScience
dc.subject.lcshTechnology
dc.titleA hybrid multi-objective optimization approach to neural architecture search for super resolution image restoration
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
LlanoGarcia_TesisDoctorado_pdfa.pdf
Size:
6.54 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
LlanoGarcia_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
421.11 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
LlanoGarcia_CartaAutorizacion_pdfa.pdf
Size:
1018.84 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia