Tesis de maestría

Sistema inteligente de diagnóstico de fallas en máquinas rotativas usando el enfoque de aprendizaje automático

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Date

Abstract

Spindle failures diagnosis in high-speed machining centers is critical in manufacturing systems, since early detection can save a representative amount of time and cost. The fault diagnosis systems usually have two blocks: feature extraction and classification, the feature extraction affects the performance of prediction model, and the essential information is realized by identification of abstract and representative high-level features. Deep Learning (DL) provides an effective way to extract the features of raw data, without prior knowledge compared with traditional Machine Learning (ML) methods. A feature learning approach was applied using 1D CNN that works directly with raw vibration signals. The network structure consists of small convolutional kernels to realize a nonlinear mapping and extract features, the classifier is a Softmax layer. The method has achieved a satisfactory performance in terms of prediction accuracy reaching an ∼99% using three bearing databases, the processing time is suitable for real-time applications with ∼8ms per signal, the repeatability has a low standard deviation ∼0.25% and achieves an acceptable network generalization ability.

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia