Real-time armed individual detection in video surveillance usingdeep learning and heuristic approaches

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelPúblico en general/General public
dc.audience.educationlevelOtros/Other
dc.contributor.advisorConant Pablos, Santiago Enrique
dc.contributor.authorAmado Garfias, Alonso Javier
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberOrtiz bayliss, José Carlos
dc.contributor.committeememberTarashima Marín Hugo
dc.contributor.committeememberGutiérrez Rodríguez, Andrés Eduardo
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.date.accepted2024-12-01
dc.date.accessioned2025-01-27T01:48:08Z
dc.date.issued2024-12
dc.descriptionhttps://orcid.org/0000-0001-6270-3164
dc.description.abstractThis researchaimstoenhancetheautomaticidentificationofarmedindividualsinvideo surveillanceinreal-time.Theproposedmethodologyinvolvesthedevelopmentofalgorithms specifically designedforthedetectionofindividualscarryinghandguns,whichincludepistols and revolvers.Toachievethis,theYOLOv4modelhasbeenselectedtodetectindividuals, handguns, andfaces.Subsequently,real-timeinformationisextractedfromtheYOLOmodel, including boundingboxcoordinates,distances,andintersectionareasbetweenhandgunsand individualswithineachvideoframe.Thisinformationfeedsourheuristicsanddifferentma- chine learning(ML)proposed,facilitatingtherecognitionofarmedindividuals.Severalchal- lenges mustbeaddressed,suchasocclusion,concealedguns,andproximityofindividualsto one another.Itencouragesthedevelopmentandcomparisonofdifferenttypesofsolutions. Theyaremadeupofthreeheuristics,seven-armedpeopledetectors(APD),and44APDto use ineachvideoframe(APD4F). The heuristicsaretheDeterministicMethodofCenters(DMC),theDeterministicMethod of Distances(DMD),andtheDeterministicMethodofIntersections(DMI).Furthermore, the APDmodelsareRandomForestClassifier(RFC-APD),MultilayerPerceptron(MLP- APD), k-Nearest-Neighbors(KNN-APD),SupportVectorMachine(SVM-APD),Logistic Regression(LR-APD),NaiveBayes(NB-APD),andGradientBoostingClassifier(GBC- APD). Thereby,IproposetocreateselectorsfordecidingwhichAPDtouseineachvideo frame (APD4F)toimprovethedetectionresults.Besides,weimplementedtwotypesof APD4Fs, onebasedonaRandomForestClassifier(RFC-APD4F)andanotherinaMultilayer Perceptron (MLP-APD4F).Wedeveloped44APD4FscombiningsubsetsofsixAPDs.The most ofAPD4FoutperformedoftheindependentuseofallAPDs.Amultilayerperceptron- based APD4F,whichcombinesanMLP-APD,aNB-APD,andaLR-APD,presentedthebest performance, achievinganaccuracyof95.84%,arecallof99.28%andanF1scoreof96.07%. This researchalsoproposesasolutiontooptimizetheproblemofdetectingarmedpeople when theweaponisnotvisible.Therefore,weapplyrecurrentneuralnetworks,suchasLong Short TermMemory(LSTM),topredictthecoordinatesoftheguns.Inthisway,itispossible to haveapredictionofarmedpeopleatalltimes.ThemeasurementbetweentheYOLO handgun detectionboundingboxesandtheLSTMpredictionresultedinanIoUof65.23%. When thefirearmdetectionbytheobjectdetectorisinterrupted,theweapon’spositionis generated bytheLSTMmodelsthat,togetherwiththeAPDs,identifythearmedpeople. When theLSTMsdeliveredtheirpredictionstotheAPDs,theNB-APDdemonstratedthe best performance,achievinganaccuracyof80.93%.TheLSTMsallowedtheanalysisof 5,288 recordsofthetestvideothatcouldnotbeanalyzedbeforeduetothelackofknowledge of thegun’sposition.
dc.description.degreeDoctor ofPhilosophy in Computer Science
dc.format.mediumTexto
dc.identificator330417
dc.identifier.citationAmado Garfias, A. J. (2024), Real-time armed individual detection in video surveillance usingdeep learning and heuristic approaches [Tesis doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703118
dc.identifier.cvu563295
dc.identifier.orcidhttps://orcid.org/0000-0001-8447-3355
dc.identifier.urihttps://hdl.handle.net/11285/703118
dc.identifier.urihttps://doi.org/10.60473/ritec.185
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS EN TIEMPO REAL
dc.subject.keywordMachine learning
dc.subject.keywordArmed people detection
dc.subject.keywordComputer visión
dc.subject.keywordObject detection
dc.subject.keywordYOLO
dc.subject.keywordGuns
dc.subject.lcshTechnology
dc.titleReal-time armed individual detection in video surveillance usingdeep learning and heuristic approaches
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
AmadoGarfilas_TesisDoctoradopdfa.pdf
Size:
11.8 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
AmadoGarfias_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
173.05 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
AmadoGarfias_Carta Autorizacionpdf.pdf
Size:
121.99 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia