Real-time armed individual detection in video surveillance usingdeep learning and heuristic approaches
| dc.audience.educationlevel | Investigadores/Researchers | |
| dc.audience.educationlevel | Público en general/General public | |
| dc.audience.educationlevel | Otros/Other | |
| dc.contributor.advisor | Conant Pablos, Santiago Enrique | |
| dc.contributor.author | Amado Garfias, Alonso Javier | |
| dc.contributor.cataloger | emipsanchez | |
| dc.contributor.committeemember | Ortiz bayliss, José Carlos | |
| dc.contributor.committeemember | Tarashima Marín Hugo | |
| dc.contributor.committeemember | Gutiérrez Rodríguez, Andrés Eduardo | |
| dc.contributor.department | School of Engineering and Sciences | |
| dc.contributor.institution | Campus Monterrey | |
| dc.date.accepted | 2024-12-01 | |
| dc.date.accessioned | 2025-01-27T01:48:08Z | |
| dc.date.issued | 2024-12 | |
| dc.description | https://orcid.org/0000-0001-6270-3164 | |
| dc.description.abstract | This researchaimstoenhancetheautomaticidentificationofarmedindividualsinvideo surveillanceinreal-time.Theproposedmethodologyinvolvesthedevelopmentofalgorithms specifically designedforthedetectionofindividualscarryinghandguns,whichincludepistols and revolvers.Toachievethis,theYOLOv4modelhasbeenselectedtodetectindividuals, handguns, andfaces.Subsequently,real-timeinformationisextractedfromtheYOLOmodel, including boundingboxcoordinates,distances,andintersectionareasbetweenhandgunsand individualswithineachvideoframe.Thisinformationfeedsourheuristicsanddifferentma- chine learning(ML)proposed,facilitatingtherecognitionofarmedindividuals.Severalchal- lenges mustbeaddressed,suchasocclusion,concealedguns,andproximityofindividualsto one another.Itencouragesthedevelopmentandcomparisonofdifferenttypesofsolutions. Theyaremadeupofthreeheuristics,seven-armedpeopledetectors(APD),and44APDto use ineachvideoframe(APD4F). The heuristicsaretheDeterministicMethodofCenters(DMC),theDeterministicMethod of Distances(DMD),andtheDeterministicMethodofIntersections(DMI).Furthermore, the APDmodelsareRandomForestClassifier(RFC-APD),MultilayerPerceptron(MLP- APD), k-Nearest-Neighbors(KNN-APD),SupportVectorMachine(SVM-APD),Logistic Regression(LR-APD),NaiveBayes(NB-APD),andGradientBoostingClassifier(GBC- APD). Thereby,IproposetocreateselectorsfordecidingwhichAPDtouseineachvideo frame (APD4F)toimprovethedetectionresults.Besides,weimplementedtwotypesof APD4Fs, onebasedonaRandomForestClassifier(RFC-APD4F)andanotherinaMultilayer Perceptron (MLP-APD4F).Wedeveloped44APD4FscombiningsubsetsofsixAPDs.The most ofAPD4FoutperformedoftheindependentuseofallAPDs.Amultilayerperceptron- based APD4F,whichcombinesanMLP-APD,aNB-APD,andaLR-APD,presentedthebest performance, achievinganaccuracyof95.84%,arecallof99.28%andanF1scoreof96.07%. This researchalsoproposesasolutiontooptimizetheproblemofdetectingarmedpeople when theweaponisnotvisible.Therefore,weapplyrecurrentneuralnetworks,suchasLong Short TermMemory(LSTM),topredictthecoordinatesoftheguns.Inthisway,itispossible to haveapredictionofarmedpeopleatalltimes.ThemeasurementbetweentheYOLO handgun detectionboundingboxesandtheLSTMpredictionresultedinanIoUof65.23%. When thefirearmdetectionbytheobjectdetectorisinterrupted,theweapon’spositionis generated bytheLSTMmodelsthat,togetherwiththeAPDs,identifythearmedpeople. When theLSTMsdeliveredtheirpredictionstotheAPDs,theNB-APDdemonstratedthe best performance,achievinganaccuracyof80.93%.TheLSTMsallowedtheanalysisof 5,288 recordsofthetestvideothatcouldnotbeanalyzedbeforeduetothelackofknowledge of thegun’sposition. | |
| dc.description.degree | Doctor ofPhilosophy in Computer Science | |
| dc.format.medium | Texto | |
| dc.identificator | 330417 | |
| dc.identifier.citation | Amado Garfias, A. J. (2024), Real-time armed individual detection in video surveillance usingdeep learning and heuristic approaches [Tesis doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703118 | |
| dc.identifier.cvu | 563295 | |
| dc.identifier.orcid | https://orcid.org/0000-0001-8447-3355 | |
| dc.identifier.uri | https://hdl.handle.net/11285/703118 | |
| dc.identifier.uri | https://doi.org/10.60473/ritec.185 | |
| dc.language.iso | eng | |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | |
| dc.relation | Instituto Tecnológico y de Estudios Superiores de Monterrey | |
| dc.relation | CONAHCYT | |
| dc.relation.isFormatOf | acceptedVersion | |
| dc.rights | openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0 | |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS EN TIEMPO REAL | |
| dc.subject.keyword | Machine learning | |
| dc.subject.keyword | Armed people detection | |
| dc.subject.keyword | Computer visión | |
| dc.subject.keyword | Object detection | |
| dc.subject.keyword | YOLO | |
| dc.subject.keyword | Guns | |
| dc.subject.lcsh | Technology | |
| dc.title | Real-time armed individual detection in video surveillance usingdeep learning and heuristic approaches | |
| dc.type | Tesis de doctorado |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- AmadoGarfilas_TesisDoctoradopdfa.pdf
- Size:
- 11.8 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Doctorado
Loading...
- Name:
- AmadoGarfias_ActaGradoDeclaracionAutoriapdfa.pdf
- Size:
- 173.05 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acta de Grado y Declaración de Autoría
Loading...
- Name:
- AmadoGarfias_Carta Autorizacionpdf.pdf
- Size:
- 121.99 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta Autorización
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.28 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

